OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 467–475

Gold-nanoparticle-assisted random lasing from powdered GaN

Toshihiro Nakamura, Tomohiro Hosaka, and Sadao Adachi  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 467-475 (2011)
http://dx.doi.org/10.1364/OE.19.000467


View Full Text Article

Enhanced HTML    Acrobat PDF (1670 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate Au-nanoparticle-assisted random lasing from a powdered GaN sample. In the presence of Au nanoparticles on GaN powder surfaces, several lasing lines are observed in photoexcited luminescence spectra near the center of the GaN band-edge emission peak. The random lasing is considered to arise from a decrease in the lasing threshold due to the suppression of crystal defect loss by surface plasmon excitation on Au. From spatially resolved lasing emission spectra and their FT analysis results, the formation of random lasing cavities at different spatial positions is confirmed. The size of the random lasing spot is determined to be larger than that of the scattered light speckle of the pumping source on a thin powdered GaN sample.

© 2011 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(160.6000) Materials : Semiconductor materials
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 30, 2010
Revised Manuscript: December 18, 2010
Manuscript Accepted: December 21, 2010
Published: January 3, 2011

Citation
Toshihiro Nakamura, Tomohiro Hosaka, and Sadao Adachi, "Gold-nanoparticle-assisted random lasing from powdered GaN," Opt. Express 19, 467-475 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-467


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Noginov, Solid-State Random Lasers (Springer, New York, 2005).
  2. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Spatial confinement of laser light in active random media," Phys. Rev. Lett. 82, 2278-2281 (1999). [CrossRef]
  3. H. Y. Yang, S. F. Yu, S. P. Lau, S. H. Tsang, G. Z. Xing, and T. Wu, "Ultraviolet coherent random lasing in randomly assembled SnO2 nanowires," Appl. Phys. Lett. 94, 241121 (2009). [CrossRef]
  4. M. Sasaki, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, "Random laser action in GaN nanocolumns," Appl. Phys. Lett. 97, 151109 (2010). [CrossRef]
  5. M. A. Noginov, G. Zhu, I. Fowlkes, and M. Bahoura, "GaAs random laser," Laser Phys. Lett. 1, 291-293 (2004). [CrossRef]
  6. T. Takahashi, T. Nakamura, and S. Adachi, "Blue-light-emitting ZnSe random laser," Opt. Lett. 34, 3923-3925 (2009). [CrossRef] [PubMed]
  7. H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, "Enhancement of band gap emission stimulated by defect loss," Opt. Express 14, 2372-2379 (2006). [CrossRef] [PubMed]
  8. T.-H. Lin, T.-T. Chen, C.-L. Cheng, H.-Y. Lin, and Y.-F. Chen, "Selectively enhanced band gap emission in ZnO/Ag2O nanocomposites," Opt. Express 17, 4342-2379 (2009). [CrossRef] [PubMed]
  9. C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, "Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles," Appl. Phys. Lett. 96, 071107 (2010). [CrossRef]
  10. O. Popov, A. Zilbershtein, and D. Davidov, "Random lasing form dye-gold nanoparticles in polymer films: Enhanced at the surface-plasmon-resonance wavelength," Appl. Phys. Lett. 89, 191116 (2006).
  11. G. D. Dice, S. Mujumdar, and A. Y. Elezzab, "Plasmonically enhanced diffusive and subdiffusive metal nanoparticles-dye random laser," Appl. Phys. Lett. 86, 13110 (2005). [CrossRef]
  12. A. Kumar, S. F. Yu, and X. F. Li, "Random laser action in dielectric-metal-dielectric surface plasmon waveguides," Appl. Phys. Lett. 95, 231114 (2009). [CrossRef]
  13. A. Tulek, R. C. Polson, and Z. V. Vardeny, "Naturally occurring resonators in random lasing of π-conjugated polymer films," Nat. Phys. 6, 303-310 (2010). [CrossRef]
  14. J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, "Co-existence of strongly and weakly localized random laser modes," Nat. Photonics 3, 279-248 (2009). [CrossRef]
  15. R. G. S. El-Dardiry, A. P. Mosk, O. L. Muskens, and A. Lagendijk, "Experimental studies on the mode structure of random lasers," Phys. Rev. A 81, 043830 (2010). [CrossRef]
  16. T. Karakouz, A. B. Tesler, T. A. Bendikov, A. Vaskevich, and I. Rubinstein, "Highly stable localized plasmon transducers obtained by thermal embedding of gold island films on glass," Adv. Mater. (Deerfield Beach Fla.) 20, 3893-3899 (2008). [CrossRef]
  17. M. A. Reshchikov, and H. Morkoc, "Luminescence properties of defects in GaN," J. Appl. Phys. 97, 061301 (2005). [CrossRef]
  18. S. Mujumdar, V. Türck, R. Torre, and D. S. Wiersma, "Chaotic behavior of a random laser with static disorder," Phys. Rev. A 76, 0338071 (2007). [CrossRef]
  19. X. Wu, and H. Cao, "Statistics of random lasing modes in weakly scattering systems," Opt. Lett. 32, 3089-3091 (2007). [CrossRef] [PubMed]
  20. S. Adachi, Handbook on Physical Properties of Semiconductors (Springer, New York, 2004).
  21. T. Takahashi, T. Nakamura, and S. Adachi, "Blue-emitting ZnSe random laser," Proc. SPIE 7597, 75971T (2010). [CrossRef]
  22. B. Shapiro, "Large intensity fluctuations for wave propagation in random media," Phys. Rev. Lett. 57, 2168-2171 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited