OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 482–492

High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication

Zhongxi Wang, N. Zhang, and X.-C. Yuan  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 482-492 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1062 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an approach to the increase of signal channels in free-space optical communication based on composed optical vortices (OVs). In the encoding process, conventional algorithm employed for the generation of collinearly superimposed OVs is combined with a genetic algorithm to achieve high-volume OV multiplexing. At the receiver end, a novel Dammann vortex grating is used to analyze the multihelix beams with a large number of OVs. We experimentally demonstrate a digitized system which is capable of transmitting and receiving 16 OV channels simultaneously. This system is expected to be compatible with a high-speed OV multiplexing technique, with potentials to extremely high-volume information density in OV communication.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(090.1970) Holography : Diffractive optics
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

Original Manuscript: October 25, 2010
Revised Manuscript: December 3, 2010
Manuscript Accepted: December 6, 2010
Published: January 3, 2011

Zhongxi Wang, N. Zhang, and X.-C. Yuan, "High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication," Opt. Express 19, 482-492 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Nye and M. V. Berry, “Dislocations in Wave Trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974). [CrossRef]
  2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  3. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 2(4), 299–313 (2008). [CrossRef]
  4. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007). [CrossRef]
  5. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001). [CrossRef] [PubMed]
  6. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001). [CrossRef]
  7. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004). [CrossRef] [PubMed]
  8. Z. Bouchal and R. Celechovsky, “Mixed vortex states of light as information carriers,” N. J. Phys. 6, 131 (2004). [CrossRef]
  9. S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48(10), 1543–1557 (2001).
  10. S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51(5), 761–773 (2004).
  11. A. A. Almazov, S. N. Khonina, and V. V. Kotlyar, “Using phase diffraction optical elements to shape and select laser beams consisting of a superposition of an arbitrary number of angular harmonics,” J. Opt. Technol. 72(5), 391–399 (2005). [CrossRef]
  12. V. V. Kotlyar, S. N. Khonina, and V. A. Soifer, “Light field decomposition in angular harmonics by means of diffractive optics,” J. Mod. Opt. 45(7), 1495–1506 (1998). [CrossRef]
  13. J. Lin, X. C. Yuan, S. H. Tao, and R. E. Burge, “Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states,” Appl. Opt. 46(21), 4680–4685 (2007). [CrossRef] [PubMed]
  14. V. A. Soifer, Methods for Computer Design of Diffractive Optical Elements (John Wiley & Sons, 2002).
  15. J. Lin, X. C. Yuan, S. H. Tao, and R. E. Burge, “Collinear superposition of multiple helical beams generated by a single azimuthally modulated phase-only element,” Opt. Lett. 30(24), 3266–3268 (2005). [CrossRef]
  16. V. Soifer, V. Kotlyar, and L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor &Francis, 1997).
  17. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, Massachusetts, 1996).
  18. J. H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor,1975).
  19. J. J. Grefenstette, “Optimization of Control Parameters for Genetic Algorithms,” IEEE Trans. Syst. Man Cybern. 16(1), 122–128 (1986). [CrossRef]
  20. J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chávez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Phys. Rev. Lett. 105(5), 053904 (2010). [CrossRef] [PubMed]
  21. G. C. G. Berkhout and M. W. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101(10), 100801 (2008). [CrossRef] [PubMed]
  22. R. Zambrini and S. M. Barnett, “Quasi-intrinsic angular momentum and the measurement of its spectrum,” Phys. Rev. Lett. 96(11), 113901 (2006). [CrossRef] [PubMed]
  23. G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient Sorting of Orbital Angular Momentum States of Light,” Phys. Rev. Lett. 105(15), 153601 (2010). [CrossRef]
  24. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992). [CrossRef] [PubMed]
  25. I. Moreno, J. A. Davis, B. M. L. Pascoguin, M. J. Mitry, and D. M. Cottrell, “Vortex sensing diffraction gratings,” Opt. Lett. 34(19), 2927–2929 (2009). [CrossRef] [PubMed]
  26. G. Gibson, J. Courtial, M. Vasnetsov, S. Barnett, S. Franke-Arnold, and M. Padgett, “Increasing the data density of free-space optical communications using orbital angular momentum,” Proc. SPIE 5550, 367–373 (2004). [CrossRef]
  27. H. Dammann and K. Görtler, “High-efficiency in-line multiple imaging by means of multiplephase holograms,” Opt. Commun. 3(5), 312–315 (1971). [CrossRef]
  28. H. Dammann and E. Klotz, “Coherent Optical Generation and Inspection of Two-dimensional Periodic Structures,” Opt. Acta (Lond.) 24(4), 505–515 (1977).
  29. C. Zhou and L. Liu, “Numerical study of Dammann array illuminators,” Appl. Opt. 34(26), 5961–5969 (1995). [CrossRef] [PubMed]
  30. N. Zhang, X. C. Yuan, and R. E. Burge, “Extending the detection range of optical vortices by Dammann vortex gratings,” Opt. Lett. 35(20), 3495–3497 (2010). [CrossRef] [PubMed]
  31. K. Murphy, D. Burke, N. Devaney, and C. Dainty, “Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor,” Opt. Express 18(15), 15448–15460 (2010). [CrossRef] [PubMed]
  32. C. Gao, X. Qi, Y. Liu, and H. Weber, “Superposition of helical beams by using a Michelson interferometer,” Opt. Express 18(1), 72–78 (2010). [CrossRef] [PubMed]
  33. R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” N. J. Phys. 9(9), 328 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited