OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 764–769

Stable low-loss optical nanofibres embedded in hydrophobic aerogel

Limin Xiao, M. D. W. Grogan, W. J. Wadsworth, R. England, and T. A. Birks  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 764-769 (2011)
http://dx.doi.org/10.1364/OE.19.000764


View Full Text Article

Enhanced HTML    Acrobat PDF (917 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanofibres, optical fibres narrower than the wavelength of light, degrade in hours on exposure to air. We show that encapsulation in hydrophobic silica aerogel (refractive index 1.05) provides protection and stability (over 2 months) without sacrificing low attenuation, strong confinement and accessible evanescent field. The measured attenuation was <0.03 dB/mm, over 10 × lower than reported with other encapsulants. This enables many nanofibre applications based on their extreme small size and strong external evanescent field, such as optical sensors, nonlinear optics, nanofibre circuits and high-Q resonators. The aerogel is more than a waterproof box, it is a completely-compatible gas-permeable material in intimate contact with the nanofibre and hydrophobic on both the macroscopic and molecular scales. Its benefits are illustrated by experiments on gas sensing (exploiting the aerogel's porosity) and supercontinuum generation (exploiting its ultra-low index).

© 2011 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 11, 2010
Revised Manuscript: December 20, 2010
Manuscript Accepted: December 25, 2010
Published: January 5, 2011

Citation
Limin Xiao, M. D. W. Grogan, W. J. Wadsworth, R. England, and T. A. Birks, "Stable low-loss optical nanofibres embedded in hydrophobic aerogel," Opt. Express 19, 764-769 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-764


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. S. MacKenzie and F. P. Payne, “Evanescent field amplification in a tapered single-mode optical fibre,” Electron. Lett. 26(2), 130–132 (1990). [CrossRef]
  2. J. Bures and R. J. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16(8), 1992–1996 (1999). [CrossRef]
  3. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  4. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009). [CrossRef]
  5. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004). [CrossRef] [PubMed]
  6. G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett. 9(2), 831–835 (2009). [CrossRef] [PubMed]
  7. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005). [CrossRef] [PubMed]
  8. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005). [CrossRef] [PubMed]
  9. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005). [CrossRef] [PubMed]
  10. Y. Li and L. M. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008). [CrossRef] [PubMed]
  11. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008). [CrossRef] [PubMed]
  12. M. Sumetsky, “Basic Elements for Microfiber Photonics: Micro/Nanofibers and Microfiber Coil Resonators,” J. Lightwave Technol. 26(1), 21–27 (2008). [CrossRef]
  13. G. Vienne, Y. Li, and L. M. Tong, “Effect of Host Polymer on Microfiber Resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007). [CrossRef]
  14. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42(9), 517–519 (2006). [CrossRef]
  15. F. Xu and G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008). [CrossRef]
  16. N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fibers for stable devices,” Opt. Lett. 35(4), 571–573 (2010). [CrossRef] [PubMed]
  17. G. M. Pajonk, “Transparent silica aerogels,” J. Non-Cryst. Solids 225(1), 307–314 (1998). [CrossRef]
  18. L. M. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34(18), 2724–2726 (2009). [CrossRef] [PubMed]
  19. H. Yokogawa and M. Yokoyama, “Hydrophobic silica aerogels,” J. Non-Cryst. Solids 186, 23–29 (1995). [CrossRef]
  20. M. Sumetsky, “How thin can a microfiber be and still guide light?” Opt. Lett. 31(7), 870–872 (2006). [CrossRef] [PubMed]
  21. N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson, and C. I. Merzbacher, “Durable Modification of Silica Aerogel Monoliths with Fluorescent 2,7-Diazapyrenium Moieties. Sensing Oxygen near the Speed of Open-Air Diffusion,” Chem. Mater. 11(10), 2837–2845 (1999). [CrossRef]
  22. Y. L. Hoo, W. Jin, C. Z. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003). [CrossRef] [PubMed]
  23. A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15(14), 8731–8736 (2007). [CrossRef] [PubMed]
  24. A. Roig, E. Molins, E. Rodríguez, S. Martínez, M. Moreno-Mañas, and A. Vallribera, “Superhydrophobic silica aerogels by fluorination at the gel stage,” Chem. Commun. (Camb.) 20(20), 2316–2317 (2004). [CrossRef]
  25. T. Y. Wei, S. Y. Lu, and Y. C. J. Chang, “Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities,” J. Phys. Chem. B 112(38), 11881–11886 (2008). [CrossRef] [PubMed]
  26. C. A. Morris, M. L. Anderson, R. M. Stroud, C. I. Merzbacher, and D. R. Rolison, “Silica sol as a nanoglue: flexible synthesis of composite aerogels,” Science 284(5414), 622–624 (1999). [CrossRef] [PubMed]
  27. M. K. Yang, R. H. French, and E. W. J. Tokarsky, “Optical properties of Teflon AF amorphous fluoropolymers,” J. Micro/Nanolith. MEMS MOEMS 7(3), 033010 (2008). [CrossRef]
  28. T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, “Refractive index dispersion law of silica aerogel,” Eur. Phys. J. C 52(3), 759–764 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited