OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 913–922

High average power diamond Raman laser

Jean-Philippe M. Feve, Kevin E. Shortoff, Matthew J. Bohn, and Jason K. Brasseur  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 913-922 (2011)
http://dx.doi.org/10.1364/OE.19.000913


View Full Text Article

Acrobat PDF (1123 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a pulsed Raman laser at 1193nm based on synthetic diamond crystals with a record output power of 24.5 W and a slope efficiency of 57%. We compared the performance of an anti-reflection coated crystal at normal incidence with a Brewster cut sample. Raman oscillation was achieved at both room temperature and under cryogenic operation at 77 K. Modeling of these experiments allowed us to confirm the value of Raman gain coefficient of diamond, which was found to be 13.5 ± 2.0 cm/GW for a pump wavelength of 1030 nm.

© 2011 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3550) Lasers and laser optics : Lasers, Raman
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.4330) Materials : Nonlinear optical materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 4, 2010
Revised Manuscript: November 18, 2010
Manuscript Accepted: January 4, 2011
Published: January 7, 2011

Citation
Jean-Philippe M. Feve, Kevin E. Shortoff, Matthew J. Bohn, and Jason K. Brasseur, "High average power diamond Raman laser," Opt. Express 19, 913-922 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-913


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Reintjes, R. H. Lehmberg, R. S. F. Chang, M. T. Duignan, and G. Calame, “Beam cleanup with stimulated Raman scattering in the intensity-averaging regime,” J. Opt. Soc. Am. B 3(10), 1408–1427 (1986). [CrossRef]
  2. G. Eckhardt, D. P. Bortfeld, and M. Geller, “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and a-sulfur single crystals,” Appl. Phys. Lett. 3(8), 137–138 (1963). [CrossRef]
  3. J. R. Olson, R. Pohl, J. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200K and the isotope effect,” Phys. Rev. B 47(22), 14850–14856 (1993). [CrossRef]
  4. T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925K,” Phys. Rev. B 62(24), 16578–16581 (2000). [CrossRef]
  5. I. Friel, S. L. Clewes, H. K. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Related Materials 18(5-8), 808–815 (2009). [CrossRef]
  6. G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007). [CrossRef]
  7. R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008). [CrossRef] [PubMed]
  8. A. Sabella, J.A. Piper, and R.P. Mildren, “1240nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010). [CrossRef] [PubMed]
  9. R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 2811–2813 (2009). [CrossRef] [PubMed]
  10. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “An intra-cavity Raman laser using synthetic single-crystal diamond,” Opt. Express 18(16), 16765–16770 (2010). [CrossRef] [PubMed]
  11. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Continuous-wave diamond Raman laser,” Opt. Lett. 35(17), 2994–2996 (2010). [CrossRef] [PubMed]
  12. D. J. Spence, E. Granados, and R. P. Mildren, “Mode-locked picosecond diamond Raman laser,” Opt. Lett. 35(4), 556–558 (2010). [CrossRef] [PubMed]
  13. A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007). [CrossRef]
  14. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999). [CrossRef] [PubMed]
  15. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005). [CrossRef]
  16. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007). [CrossRef]
  17. J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008). [CrossRef]
  18. J. Fontanella, R. L. Johnston, J. H. Colwell, and C. Andeen, “Temperature and pressure variation of the refractive index of diamond,” Appl. Opt. 16(11), 2949–2951 (1977). [CrossRef] [PubMed]
  19. V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, and V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1-2), 127–134 (2010). [CrossRef]
  20. J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010). [CrossRef]
  21. J. Mossbrucker and T. Grotjohn, “Determination of local crystal orientation of diamond using polarized Raman spectra,” Diamond Related Materials 5(11), 1333–1343 (1996). [CrossRef]
  22. R. Radebaugh, “Thermal conductance of indium solder joints at low temperature,” Rev. Sci. Instrum. 48(1), 93–94 (1977). [CrossRef]
  23. J. C. Diels, and W. Rudolph, Ultrashort Laser Pulse Phenomena (Elsevier, 2006, 2nd edition), pp 328–332.
  24. J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “Characterization of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 16(8), 1305–1312 (1999). [CrossRef]
  25. G. Boyd, W. Johnston, and I. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. 5(4), 203–206 (1969). [CrossRef]
  26. N. Bloembergen, Nonlinear Optics (Benjamin, 1965) Chap. 5.
  27. A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, “Observation of stimulated Raman scattering in CVD-diamond,” JETP Lett. 80(4), 267–270 (2004). [CrossRef]
  28. S. A. Solin and A. K. Ramdas, “Raman spectrum of diamond,” Phys. Rev. B 1(4), 1687–1698 (1970). [CrossRef]
  29. The CVD diamond booklet, available at http://www.diamond-materials.com/download
  30. W. Koechner, Solid-State Laser Engineering (Springer, 1999) Chap. 7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited