OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 968–980

Pure chiral optical fibres

L. Poladian, M. Straton, A. Docherty, and A. Argyros  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 968-980 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1617 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the properties of optical fibres made from chiral materials, in which a contrast in only optical rotation forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left-and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical rotation required in each case is quantified.

© 2011 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(230.5440) Optical devices : Polarization-selective devices
(160.1585) Materials : Chiral media

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 28, 2010
Revised Manuscript: December 19, 2010
Manuscript Accepted: December 25, 2010
Published: January 7, 2011

L. Poladian, M. Straton, A. Docherty, and A. Argyros, "Pure chiral optical fibres," Opt. Express 19, 968-980 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. B. Amabilino, Chirality at the nanoscale: Nanoparticles, surfaces, materials and more, (Wiley-VCH, Weinheim 2009).
  2. T. M. Lowry, Optical rotatory power, (Dover Publications, New York 1964).
  3. K. V. Varadan, V. V. Varadan, and A. Lakhtakia, Time-Harmonic Electromagnetic Fields in Chiral Media, (Springer-Verlag, 1989).
  4. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 10711089 (1986). [CrossRef]
  5. I. Bassett, “Design principle for a circularly birefringent optical fiber,” Opt. Lett. 13, 844–846 (1988). [CrossRef] [PubMed]
  6. A. Argyros, J. Pla, F. Ladouceur, and L. Poladian, “Circular and elliptical birefringence in spun microstructured optical fibres,” Opt. Express 17, 15983–15990 (2009). [CrossRef] [PubMed]
  7. N. S. Pujari, M. R. Kulkarni, M. C. J. Large, I. M. Bassett, and S. Ponrathnam, “Transparent chiral polymers for optical applications,” J. Appl. Polym. Sci. 98, 58–65 (2005). [CrossRef]
  8. A. Argyros, M. Straton, A. Docherty, E. H. Min, Z. Ge, K. H. Wong, F. Ladouceur, and L. Poladian, “Consideration of chiral optical fibres,” Front. Optoelectron. China 3, 67–70 (2010). [CrossRef]
  9. A. K. Singh, K. S. Singh, P. Khastgir, S. P. Ojha, and O. N. Singh, “Modal cutoff condition of an optical chiral fiber with different chiralities in the core and the cladding,” J. Opt. Soc. Am. B 11, 1283–1287 (1994). [CrossRef]
  10. R. C. Qiu, and I. T. Lu, “Dispersion in chiral optical fibres,” IEE Proc., Optoelectron. 145, 155–158 (1998). [CrossRef]
  11. F. M. Janeiro, C. R. Paiva, and A. L. Topa, “Guidance and leakage properties of chiral optical fibers,” J. Opt. Soc. Am. B 19, 2558–2566 (2002). [CrossRef]
  12. P. K. Choudhury, and T. Yoshino, “Characterization of the optical power confinement in a simple chirofiber,” Optik (Stuttg.) 113, 89–95 (2002). [CrossRef]
  13. F. I. Fedorov, “Contribution to the theory of the optical activity of crystals. 1. The law of conservation of energy and tensors of optical activity,” Opt. I Spektrosk. 6, 85–93 (1959).
  14. A. W. Snyder, and J. D. Love, Optical Waveguide Theory, (Chapman and Hall, London 1983).
  15. The optical activity of a material is commonly quoted as the rotation α, in degrees per decimetre, at 589 nm, at a specified temperature and concentration. Note we use different units in this paper.
  16. A. Argyros, “Guided modes and loss in Bragg fibres,” Opt. Express 10, 1411–1417 (2002). [PubMed]
  17. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182184 (2004).
  18. I. Bassett, and A. Argyros, “Elimination of polarisation degeneracy in round waveguides,” Opt. Express 10, 1342–1346 (2002). [PubMed]
  19. A. Argyros, I. M. Bassett, M. A. van Eijkelenborg, and M. C. J. Large, “Microstructured optical fiber for singlepolarization air-guidance,” Opt. Lett. 29, 20–22 (2004). [CrossRef] [PubMed]
  20. P. St. J. Russell, “Photonic-cystal fibers,” J. Lightwave Technol. 24, 47294749 (2006). [CrossRef]
  21. A. Argyros, “Microstructured polymer optical fibers,” J. Lightwave Technol. 27, 1571–1579 (2009). [CrossRef]
  22. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited