OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 18893–18902

Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample

Hsiang-Chen Wang, Xuan-Yu Yu, Yu-Lun Chueh, Tadas Malinauskas, Kestutis Jarasiunas, and Shih-Wei Feng  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 18893-18902 (2011)
http://dx.doi.org/10.1364/OE.19.018893


View Full Text Article

Enhanced HTML    Acrobat PDF (2281 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Temperature-dependent picosecond non-degenerate four-wave-mixing experiments were performed to explore the carrier dynamics in an InGaN/GaN multiple quantum well sample, in which light emission enhancement with surface plasmon (SP) coupling has been identified. In the time-resolved photoluminescence results, we can identify the faster carrier decay time of the sample with surface plasmon coupling. The faster decay time is due to this sample’s ability to create additional channels for effective carrier recombination. In the four-wave-mixing results, a slower grating decay time of the sample with surface plasmon coupling was measured. The diffusion coefficients and surface recombination velocities of photo-created carriers were estimated by modeling the decay rate of transient grating signals. For the sample for which surface plasmon coupling exists, smaller diffusion coefficients and slower surface recombination velocities can be estimated when the temperatures are above 150 K. The carriers coupling with some SP modes is not the only mechanism contributing to emission enhancement. In the InGaN/GaN multiple quantum well sample, surface recombination suppressed by SP coupling is another factor for increased light emission efficiency.

© 2011 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Materials

History
Original Manuscript: July 5, 2011
Revised Manuscript: August 26, 2011
Manuscript Accepted: August 29, 2011
Published: September 14, 2011

Citation
Hsiang-Chen Wang, Xuan-Yu Yu, Yu-Lun Chueh, Tadas Malinauskas, Kestutis Jarasiunas, and Shih-Wei Feng, "Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample," Opt. Express 19, 18893-18902 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-18893


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  2. S. A. Maier and H. A. Atwater, “Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005). [CrossRef]
  3. H. L. Chen, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Characteristics of light emitter coupling with surface plasmons in air/metal/dielectric grating structures,” J. Opt. Soc. Am. B26(5), 923 (2009). [CrossRef]
  4. V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys. Rev. B75(2), 024303 (2007). [CrossRef]
  5. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60(16), 11564–11567 (1999). [CrossRef]
  6. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  7. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B66(15), 153305 (2002). [CrossRef]
  8. J. B. Khurgin and G. Sun, “Enhancement of light absorption in a quantum well by surface plasmon polariton,” Appl. Phys. Lett.94(19), 191106 (2009). [CrossRef]
  9. K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gudelis, T. Tamulevicius, S. Tamulevicius, A. Guobiene, A. Usikov, V. Dmitriev, and H. J. Gerritsen, “Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers,” Rev. Sci. Instrum.78(3), 033901 (2007). [CrossRef] [PubMed]
  10. H.-C. Wang, S.-W. Feng, T. Malinauskas, K. Jarasiunas, C.-C. Ting, S. Liu, and C.-Y. Tsai, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films518(24), 7291–7294 (2010). [CrossRef]
  11. W. C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B65(15), 155423 (2002). [CrossRef]
  12. T. S. Oh, H. Jeong, Y. S. Lee, J. D. Kim, T. H. Seo, H. Kim, A. H. Park, K. J. Lee, and E.-K. Suh, “Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster,” Appl. Phys. Lett.95(11), 111112 (2009). [CrossRef]
  13. D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: Effect on exciton binding energy,” Phys. Rev. B Condens. Matter42(9), 5906–5909 (1990). [CrossRef] [PubMed]
  14. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology19(34), 345201 (2008). [CrossRef] [PubMed]
  15. H. C. Wang, S. J. Lin, Y. C. Lu, Y. C. Cheng, C. C. Yang, and K. J. Ma, “Carrier relaxation in InGaN/GaN quantum wells with nanometer-scale cluster structures,” Appl. Phys. Lett.85(8), 1371 (2004). [CrossRef]
  16. M. Syvajarvi and R. Yakimova, Wide Band Gap Materials and New Developments (Research Signpost, 2007).
  17. H. C. Wang, Y. C. Lu, C. Y. Chen, and C. C. Yang, “Carrier capture times of the localized states in an InGaN thin film with indium-rich nanocluster structures,” Appl. Phys. Lett.89(1), 011906 (2006). [CrossRef]
  18. S. Nargelas, T. Malinauskas, A. Kadys, E. Dimakis, T. D. Moustakas, and K. Jarašiuūnas, “Nonlinear carrier recombination and transport features in highly excited InN layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys.6(S2), S735–S738 (2009). [CrossRef]
  19. T. Malinauskas, K. Jarasiunas, S. Miasojedovas, S. Jursenas, B. Beaumont, and P. Gibart, “Optical monitoring of nonequilibrium carrier lifetime in freestanding GaN by time-resolved four-wave mixing and photoluminescence techniques,” Appl. Phys. Lett.88(20), 202109 (2006). [CrossRef]
  20. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics, 2nd edn. (Springer, Berlin, Heidelberg 1992).
  21. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys.94(6), 3675 (2003). [CrossRef]
  22. T. Malinauskas, K. Jarasiunas, M. Heuken, F. Scholz, and P. Bruckner, “Diffusion and recombination of degenerate carrier plasma in GaN,” Phys. Status Solidi., C Curr. Top. Solid State Phys.6(S2), S743–S746 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited