OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19084–19092

Power flow from a dipole emitter near an optical antenna

Kevin C. Y. Huang, Young Chul Jun, Min-Kyo Seo, and Mark L. Brongersma  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19084-19092 (2011)
http://dx.doi.org/10.1364/OE.19.019084


View Full Text Article

Enhanced HTML    Acrobat PDF (1015 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Current methods to calculate the emission enhancement of a quantum emitter coupled to an optical antenna of arbitrary geometry rely on analyzing the total Poynting vector power flow out of the emitter or the dyadic Green functions from full-field numerical simulations. Unfortunately, these methods do not provide information regarding the nature of the dominant energy decay pathways. We present a new approach that allows for a rigorous separation, quantification, and visualization of the emitter output power flow captured by an antenna and the subsequent reradiation power flow to the far field. Such analysis reveals unprecedented details of the emitter/antenna coupling mechanisms and thus opens up new design strategies for strongly interacting emitter/antenna systems used in sensing, active plasmonics and metamaterials, and quantum optics.

© 2011 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(240.6680) Optics at surfaces : Surface plasmons
(260.2510) Physical optics : Fluorescence
(260.3910) Physical optics : Metal optics
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 13, 2011
Revised Manuscript: August 3, 2011
Manuscript Accepted: August 3, 2011
Published: September 15, 2011

Citation
Kevin C. Y. Huang, Young Chul Jun, Min-Kyo Seo, and Mark L. Brongersma, "Power flow from a dipole emitter near an optical antenna," Opt. Express 19, 19084-19092 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19084


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. P. R. Berman, Cavity Quantum Electrodynamics (Academic Press, 1994).
  3. Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78, 153111 (2008). [CrossRef]
  4. R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmonic resonances,” Phys. Rev. Lett. 104, 026802 (2010). [CrossRef] [PubMed]
  5. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). [CrossRef]
  6. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13, 8372–8379 (2005). [CrossRef] [PubMed]
  7. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008). [CrossRef]
  8. R. M. Bakker, V. P. Drachev, Z. Liu, H. Yuang, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10, 125022 (2008). [CrossRef]
  9. D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmon,” Phys. Rev. B 76, 035420 (2007). [CrossRef]
  10. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008). [CrossRef]
  11. J. N. Farahani, H. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007). [CrossRef]
  12. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007). [CrossRef] [PubMed]
  13. S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006). [CrossRef] [PubMed]
  14. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010). [CrossRef] [PubMed]
  15. P. G. Etchegoin and E. C. L. Ru, “Multipolar emission in the vicinity of metallic nanostructures,” J. Phys. Condens. Matter 18, 1175–1188 (2006). [CrossRef]
  16. Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011). [CrossRef] [PubMed]
  17. A. F. Koenderink, “On the use of purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010). [CrossRef] [PubMed]
  18. H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988). [CrossRef] [PubMed]
  19. R. R. Chance, A. Prock, and R. Silbey, Molecular Fluorescence and Energy Transfer Near Interfaces (Wiley, 1978), Vol. 37.
  20. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge Univ. Press, 2006).
  21. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant mode,” Nano Lett. 11, 1020–1024 (2011). [CrossRef] [PubMed]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  23. C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51, 323–327 (1983). [CrossRef]
  24. H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhnace optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008). [CrossRef]
  25. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16, 16529–16537 (2008). [CrossRef] [PubMed]
  26. G. D. Valle, T. Sondergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express 16, 6867–6876 (2008). [CrossRef] [PubMed]
  27. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), 3rd ed.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited