OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19135–19141

> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser

Rakesh Bhandari and Takunori Taira  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19135-19141 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2822 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Megawatt peak power, giant pulse microchip lasers are attractive for wavelength conversion, provided their output is linearly polarized. We use a [110] cut Cr4+:YAG for passively Q-switched Nd:YAG microchip laser to obtain a stable, linearly polarized output. Further, we optimize the conditions for second harmonic generation at 532 nm wavelength to achieve > 6 MW peak power, 1.7 mJ, 265 ps, 100 Hz pulses with a conversion efficiency of 85%.

© 2011 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 3, 2011
Revised Manuscript: September 1, 2011
Manuscript Accepted: September 1, 2011
Published: September 19, 2011

Rakesh Bhandari and Takunori Taira, "> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser," Opt. Express 19, 19135-19141 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999). [CrossRef]
  2. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001). [CrossRef]
  3. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008). [CrossRef] [PubMed]
  4. S. Hayashi, T. Shibuya, H. Sakai, T. Taira, C. Otani, Y. Ogawa, and K. Kawase, “Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser,” Appl. Opt. 48(15), 2899–2902 (2009). [CrossRef] [PubMed]
  5. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010). [CrossRef]
  6. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011). [CrossRef] [PubMed]
  7. OSA News Release, http://www.osa.org/about_osa/newsroom/news_releases/releases/04.2011/lasersparksrevolution.aspx .
  8. EurekAlert! (AAAS Science news wire), http://www.eurekalert.org/pub_releases/2011-04/osoa-lsr042011.php .
  9. Business Wire, http://www.businesswire.com/news/home/20110420005464/en/Laser-Sparks-Revolution-Internal-Combustion-Engines .
  10. B. B. C. News, http://www.bbc.co.uk/news/science-environment-13160950 .
  11. Forbes, http://blogs.forbes.com/alexknapp/2011/04/23/replacing-spark-plugs-with-lasers-for-a-more-fuel-efficient-car/ .
  12. New York Times, http://wheels.blogs.nytimes.com/2011/04/27/spark-plugs-joining-carburetors-on-the-automotive-scrap-heap/ .
  13. T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994). [CrossRef]
  14. T. Taira and T. Kobayashi, “Intracavity frequency doubling and Q switching in diode-laser-pumped Nd:YVO4 lasers,” Appl. Opt. 34(21), 4298–4301 (1995). [CrossRef] [PubMed]
  15. J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid-and high-power passively Q-switched microchip lasers,” in Proceeding of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D. C., 1999), pp. 178–186.
  16. H. Sakai, A. Sone, H. Kan, and T. Taira, “Polarization stabilizing for diode-pumped passively Q-switched Nd:YAG microchip lasers,” in Advanced Solid-State Photonics Technical Digest (Optical Society of America, 2006), paper MD2.
  17. H. Sakai, H. Kan, and T. Taira, “Passive Q-switch laser device,” U. S. Patent No. 7,664,148 B2 (Feb. 16, 2010).
  18. G. Mennerat, J. Rault, O. Bonville, P. Canal, O. Hartmann, E. Mazataud, L. Marmande, L. Patissou, J.-F. Charrier, C. Lepage, “Very high efficiency high-energy frequency doubling in the Alise facility,” in Advanced Solid-State Photonics Technical Digest (Optical Society of America, 2010), paper ATuA24.
  19. J. E. Bjorkholm, “Optical second-harmonic generation using a focused Gaussian laser beam,” Phys. Rev. 142(1), 126–136 (1966). [CrossRef]
  20. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968). [CrossRef]
  21. S.-C. Sheng and A. E. Siegman, “Nonlinear-optical calculations using fast-transform methods: second-harmonic generation with depletion and diffraction,” Phys. Rev. A 21(2), 599–606 (1980). [CrossRef]
  22. T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics [invited],” Opt. Mater. Express 1(5), 1040–1050 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited