OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19212–19222

Calcium imaging in the optical stretcher

Markus Gyger, Daniel Rose, Roland Stange, Tobias Kießling, Mareike Zink, Ben Fabry, and Josef A. Käs  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19212-19222 (2011)
http://dx.doi.org/10.1364/OE.19.019212


View Full Text Article

Enhanced HTML    Acrobat PDF (1180 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Microfluidic Optical Stretcher (MOS) has previously been shown to be a versatile tool to measure mechanical properties of single suspended cells. In this study we combine optical stretching and fluorescent calcium imaging. A cell line transfected with a heat sensitive cation channel was used as a model system to show the versatility of the setup. The cells were loaded with the Ca2+ dye Fluo-4 and imaged with confocal laser scanning microscopy while being stretched. During optical stretching heat is transferred to the cell causing a pronounced Ca2+ influx through the cation channel. The technique opens new perspectives for investigating the role of Ca2+ in regulating cell mechanical behavior.

© 2011 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(170.1530) Medical optics and biotechnology : Cell analysis
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 2, 2011
Revised Manuscript: July 14, 2011
Manuscript Accepted: August 1, 2011
Published: September 19, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Markus Gyger, Daniel Rose, Roland Stange, Tobias Kießling, Mareike Zink, Ben Fabry, and Josef A. Käs, "Calcium imaging in the optical stretcher," Opt. Express 19, 19212-19222 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19212


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  2. A. Ashkin and J. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987). [CrossRef] [PubMed]
  4. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994). [CrossRef] [PubMed]
  5. H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5, 671–690 (2008). [CrossRef]
  6. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000). [CrossRef] [PubMed]
  7. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001). [CrossRef] [PubMed]
  8. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005). [CrossRef] [PubMed]
  9. F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106, 15696–15701 (2009). [CrossRef] [PubMed]
  10. B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007). [CrossRef] [PubMed]
  11. T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral Cancer Diagnosis by Mechanical Phenotyping,” Cancer Res. 69, 1728–1732 (2009). [CrossRef] [PubMed]
  12. A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6, 730–732 (2010). [CrossRef]
  13. D. Icard-Arcizet, O. Cardoso, A. Richert, and S. Hnon, “Cell stiffening in response to external stress is correlated to actin recruitment,” Biophys. J. 94, 2906–2913 (2008). [CrossRef] [PubMed]
  14. M. Whitaker, “Calcium at fertilization and in early development,” Physiol. Rev. 86, 25–88 (2006). [CrossRef]
  15. E. Neher and T. Sakaba, “Multiple roles of calcium ions in the regulation of neurotransmitter release,” Neuron 59, 861–872 (2008). [CrossRef] [PubMed]
  16. J. Lee, A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson, “Regulation of cell movement is mediated by stretch-activated calcium channels,” Nature 400, 382–386 (1999). [CrossRef] [PubMed]
  17. R. E. Haddock and C. E. Hill, “Rhythmicity in arterial smooth muscle,” J. Physiol. 566, 645–656 (2005). [CrossRef] [PubMed]
  18. G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104, 787–795 (2009). [CrossRef] [PubMed]
  19. C. Wei, X. Wang, M. Chen, K. Ouyang, L.-S. Song, and H. Cheng, “Calcium flickers steer cell migration,” Nature 457, 901–905 (2009). [CrossRef] [PubMed]
  20. S. Wray, “Insights into the uterus,” Exp. Physiol. 92, 621–631 (2007). [CrossRef] [PubMed]
  21. M. J. Sanderson and E. R. Dirksen, “Mechanosensitivity of cultured ciliated cells from the mammalian respiratory tract: implications for the regulation of mucociliary transport,” Proc. Natl. Acad. Sci. U.S.A. 83, 7302–7306 (1986). [CrossRef] [PubMed]
  22. M. J. Sanderson, A. C. Charles, and E. R. Dirksen, “Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells.” Cell Regul. 1, 585–596 (1990). [PubMed]
  23. R. Y. Tsien, “New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures,” Biochemistry 19, 2396–2404 (1980). [CrossRef] [PubMed]
  24. R. Y. Tsien, “A non-disruptive technique for loading calcium buffers and indicators into cells,” Nature 290, 527–528 (1981). [CrossRef] [PubMed]
  25. R. Y. Tsien, T. Pozzan, and T. J. Rink, “Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator.” J. Cell Biol. 94, 325–334 (1982). [CrossRef] [PubMed]
  26. A. Minta, J. Kao, and R. Tsien, “Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores,” J. Biol. Chem. 264, 8171–8178 (1989). [PubMed]
  27. K. R. Gee, K. A. Brown, W.-N. U. Chen, J. Bishop-Stewart, D. Gray, and I. Johnson, “Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes,” Cell Calcium 27, 97–106 (2000). [CrossRef] [PubMed]
  28. R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46, 143–151 (2008). [CrossRef] [PubMed]
  29. A. E. Palmer and R. Y. Tsien, “Measuring calcium signaling using genetically targetable fluorescent indicators,” Nat. Protoc. 1, 1057–1065 (2006). [CrossRef]
  30. N. Demaurex, “Calcium measurements in organelles with Ca2+-sensitive fluorescent proteins,” Cell Calcium 38, 213–222 (2005). [CrossRef] [PubMed]
  31. M. J. Caterina and D. Julius, “The vanilloid receptor: a molecular gateway to the pain pathway,” Annu. Rev. Neurosci. 24, 487–517 (2001). [CrossRef] [PubMed]
  32. M. J. Caterina, “Transient receptor potential ion channels as participants in thermosensation and thermoregulation,” Am. J. Physiol. Regulatory Integrative Comp. Physiol. 292, R64–R76 (2007). [CrossRef]
  33. B. Nilius, G. Owsianik, T. Voets, and J. A. Peters, “Transient receptor potential cation channels in disease,” Physiol. Rev. 87, 165–217 (2007). [CrossRef] [PubMed]
  34. M. Caterina, M. Schumacher, M. Tominaga, T. Rosen, J. Levine, and D. Julius, “The capsaicin receptor: a heat-activated ion channel in the pain pathway,” Nature 389, 816–824 (1997). [CrossRef] [PubMed]
  35. M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H. Gilbert, K. Skinner, B. E. Raumann, A. I. Basbaum, and D. Julius, “The cloned capsaicin receptor integrates multiple pain-producing stimuli,” Neuron 21, 531–543 (1998). [CrossRef] [PubMed]
  36. J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000). [CrossRef] [PubMed]
  37. L. A. Birder, “More than just a barrier: urothelium as a drug target for urinary bladder pain,” Am. J. Physiol. 289, F489–F495 (2005). [CrossRef]
  38. C.-K. Park, M. S. Kim, Z. Fang, H. Y. Li, S. J. Jung, S.-Y. Choi, S. J. Lee, K. Park, J. S. Kim, and S. B. Oh, “Functional Expression of thermo-transient receptor potential channels in dental primary afferent neurons,” J. Biol. Chem. 281, 17304–17311 (2006). [CrossRef] [PubMed]
  39. M. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (CRC Press, 2002).
  40. S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493–15499 (2007). [CrossRef] [PubMed]
  41. M. St. Pierre, P. Reeh, and K. Zimmermann, “Differential effects of trpv channel block on polymodal activation of rat cutaneous nociceptors in vitro,” Exp. Brain Res. 196, 31–44 (2009). [CrossRef] [PubMed]
  42. J. R. Savidge, S. P. Ranasinghe, and H. P. Rang, “Comparison of intracellular calcium signals evoked by heat and capsaicin in cultured rat dorsal root ganglion neurons and in a cell line expressing the rat vanilloid receptor, vr1,” Neuroscience 102, 177–184 (2001). [CrossRef] [PubMed]
  43. M. L. Woodruff, A. P. Sampath, H. R. Matthews, N. V. Krasnoperova, J. Lem, and G. L. Fain, “Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice,” J. Physiol. 542, 843–854 (2002). [CrossRef] [PubMed]
  44. H. Schmidt, K. M. Stiefel, P. Racay, B. Schwaller, and J. Eilers, “Mutational analysis of dendritic ca2+ kinetics in rodent purkinje cells: role of parvalbumin and calbindin d28k,” J. Physiol. 551, 13–32 (2003). [CrossRef] [PubMed]
  45. F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Ks, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40, 1–6 (2011). [CrossRef]
  46. C. T. Mierke, D. Rösel, B. Fabry, and J. Brábek, “Contractile forces in tumor cell migration,” Eur. J. Cell Biol. 87, 669–676 (2008). [CrossRef] [PubMed]
  47. B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg, “Scaling the microrheology of living cells,” Phys. Rev. Lett. 87, 148102 (2001). [CrossRef] [PubMed]
  48. F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94, 098103 (2005). [CrossRef] [PubMed]
  49. R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Käs, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502–516 (2006). [CrossRef] [PubMed]
  50. P. Kollmannsberger and B. Fabry, “Linear and nonlinear rheology of living cells,” Annu. Rev. Mater. Res. 41, 75–97 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (2871 KB)      QuickTime
» Media 2: AVI (2360 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited