OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19384–19398

Pixelated source mask optimization for process robustness in optical lithography

Ningning Jia and Edmund Y. Lam  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19384-19398 (2011)
http://dx.doi.org/10.1364/OE.19.019384


View Full Text Article

Enhanced HTML    Acrobat PDF (919 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical lithography has enabled the printing of progressively smaller circuit patterns over the years. However, as the feature size shrinks, the lithographic process variation becomes more pronounced. Source-mask optimization (SMO) is a current technology allowing a co-design of the source and the mask for higher resolution imaging. In this paper, we develop a pixelated SMO using inverse imaging, and incorporate the statistical variations explicitly in an optimization framework. Simulation results demonstrate its efficacy in process robustness enhancement.

© 2011 OSA

OCIS Codes
(110.3960) Imaging systems : Microlithography
(110.5220) Imaging systems : Photolithography
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

History
Original Manuscript: June 8, 2011
Revised Manuscript: August 26, 2011
Manuscript Accepted: August 30, 2011
Published: September 22, 2011

Citation
Ningning Jia and Edmund Y. Lam, "Pixelated source mask optimization for process robustness in optical lithography," Opt. Express 19, 19384-19398 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19384


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001). [CrossRef]
  2. M. Rothschild, “A roadmap for optical lithography,” Opt. Photon. News21(6), 26–31 (2010). [CrossRef]
  3. E. Y. Lam and A. K. Wong, “Computation lithography: virtual reality and virtual virtuality,” Opt. Express17(15), 12259–12268 (2009). [CrossRef] [PubMed]
  4. A. Poonawala and P. Milanfar, “Mask design for optical microlithography — an inverse imaging problem,” IEEE Trans. Image Process.16(3), 774–788 (2007). [CrossRef] [PubMed]
  5. L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ILT): a natural solution for model-based SRAF at 45nm and 32nm,” in Photomask and Next-Generation Lithography Mask Technology XIV, vol. 6607 of Proc. SPIE, p. 660739 (2007).
  6. Y. Shen, N. Wong, and E. Y. Lam, “Level-set-based inverse lithography for photomask synthesis,” Opt. Express17(26), 23690–23701 (2009). [CrossRef]
  7. X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express15(23), 15066–15079 (2007). [CrossRef] [PubMed]
  8. S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express16(19), 14,46–14760 (2008). [CrossRef]
  9. N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt.12(4), 045601 (2010). [CrossRef]
  10. Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express19(6), 5511–5521 (2011). [CrossRef] [PubMed]
  11. M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact patterns,” Microelectron. Eng.41–42, 91–96 (1998). [CrossRef]
  12. R. Socha, M. Eurlings, F. Nowak, and J. Finders, “Illumination optimization of periodic patterns for maximum process window,” Microelectron. Eng.61–62, 57–64 (2002). [CrossRef]
  13. A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsys.1(1), 13–30 (2002). [CrossRef]
  14. T. Fühner, A. Erdmann, and S. Seifert, “Direct optimization approach for lithographic process conditions,” J. Microlith. Microfab. Microsys.6(3), 031006 (2007).
  15. K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
  16. L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K.-H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” in Lithography Asia 2009, vol. 7520 of Proc. SPIE, p. 75200X (2009).
  17. T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H.-J. Stock, A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” in Photomask Technology 2010, vol. 7823 of Proc. SPIE, p. 78233X (2010).
  18. X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography,” Opt. Express17(7), 5783–5793 (2009). [CrossRef] [PubMed]
  19. J.-C. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” in Optical Microlithography XXIV, vol. 7973 of Proc. SPIE, p. 797320 (2011).
  20. Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process.99, 1–10 (2011).
  21. A. K. Wong, Optical Imaging in Projection Microlithography (SPIE, 2005). [CrossRef]
  22. Y. Granik, “Source optimization for image fidelity and throughput,” J. Microlith. Microfab. Microsys.3(4), 509–522 (2004). [CrossRef]
  23. J.-C. Yu and P. Yu, “Impacts of cost functions on inverse lithography patterning,” Opt. Express18(22), 23331–23342 (2010). [CrossRef] [PubMed]
  24. D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Probl.19(6), 165–187 (2003). [CrossRef]
  25. M. K. Ng, H. Shen, E. Y. Lam, and L. Zhang, “A total variation regularization based super-resolution reconstruction algorithm for digital video,” EURASIP Journal on Advances in Signal Processing2007, Article ID 74,585 (2007). [CrossRef]
  26. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).
  27. C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley, 2007). [CrossRef]
  28. N. Jia, A. K. Wong, and E. Y. Lam, “Robust mask design with defocus variation using inverse synthesis,” in Lithography Asia, vol. 7140 of Proc. SPIE, p. 71401W (2008).
  29. J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer, 2006).
  30. N. Jia and E. Y. Lam, “Performance analysis of pixelated source-mask optimization for optical microlithography,” in IEEE International Conference on Electron Devices and Solid-State Circuits (2010).
  31. L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds., vol. 7122 of Proc. SPIE, p. 71221W (2008).
  32. R. J. Socha, D. J. Van Den Broeke, S. D. Hsu, J. F. Chen, T. L. Laidig, N. P. Corcoran, U. Hollerbach, K. E. Wampler, X. Shi, and W. E. Conley, “Contact hole reticle optimization by using interference mapping lithography (IML),” in Photomask and Next–Generation Lithography Mask Technology XI, H. Tanabe, ed., vol. 5446 of Proc. SPIE, pp. 516–534 (2004). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited