Optics InfoBase > Optics Express > Volume 19 > Issue 20 > Page 19384
Pixelated source mask optimization for process robustness in optical lithographyNingning Jia and Edmund Y. Lam »View Author Affiliations
Ningning Jia
and Edmund Y. Lam^{*}
^{}Imaging Systems Laboratory, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong ^{*}Corresponding author: elam@eee.hku.hk |
Optics Express, Vol. 19, Issue 20, pp. 19384-19398 (2011)
http://dx.doi.org/10.1364/OE.19.019384
View Full Text Article
Enhanced HTML Acrobat PDF (919 KB)
Abstract
Optical lithography has enabled the printing of progressively smaller circuit patterns over the years. However, as the feature size shrinks, the lithographic process variation becomes more pronounced. Source-mask optimization (SMO) is a current technology allowing a co-design of the source and the mask for higher resolution imaging. In this paper, we develop a pixelated SMO using inverse imaging, and incorporate the statistical variations explicitly in an optimization framework. Simulation results demonstrate its efficacy in process robustness enhancement.
© 2011 OSA
OCIS Codes
(110.3960) Imaging systems : Microlithography
(110.5220) Imaging systems : Photolithography
(110.1758) Imaging systems : Computational imaging
ToC Category:
Imaging Systems
History
Original Manuscript: June 8, 2011
Revised Manuscript: August 26, 2011
Manuscript Accepted: August 30, 2011
Published: September 22, 2011
Citation
Ningning Jia and Edmund Y. Lam, "Pixelated source mask optimization for process robustness in optical lithography," Opt. Express 19, 19384-19398 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19384
Sort: Author | Year | Journal | Reset
References
- A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001). [CrossRef]
- M. Rothschild, “A roadmap for optical lithography,” Opt. Photon. News21(6), 26–31 (2010). [CrossRef]
- E. Y. Lam and A. K. Wong, “Computation lithography: virtual reality and virtual virtuality,” Opt. Express17(15), 12259–12268 (2009). [CrossRef] [PubMed]
- A. Poonawala and P. Milanfar, “Mask design for optical microlithography — an inverse imaging problem,” IEEE Trans. Image Process.16(3), 774–788 (2007). [CrossRef] [PubMed]
- L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ILT): a natural solution for model-based SRAF at 45nm and 32nm,” in Photomask and Next-Generation Lithography Mask Technology XIV, vol. 6607 of Proc. SPIE, p. 660739 (2007).
- Y. Shen, N. Wong, and E. Y. Lam, “Level-set-based inverse lithography for photomask synthesis,” Opt. Express17(26), 23690–23701 (2009). [CrossRef]
- X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express15(23), 15066–15079 (2007). [CrossRef] [PubMed]
- S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express16(19), 14,46–14760 (2008). [CrossRef]
- N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt.12(4), 045601 (2010). [CrossRef]
- Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express19(6), 5511–5521 (2011). [CrossRef] [PubMed]
- M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact patterns,” Microelectron. Eng.41–42, 91–96 (1998). [CrossRef]
- R. Socha, M. Eurlings, F. Nowak, and J. Finders, “Illumination optimization of periodic patterns for maximum process window,” Microelectron. Eng.61–62, 57–64 (2002). [CrossRef]
- A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsys.1(1), 13–30 (2002). [CrossRef]
- T. Fühner, A. Erdmann, and S. Seifert, “Direct optimization approach for lithographic process conditions,” J. Microlith. Microfab. Microsys.6(3), 031006 (2007).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K.-H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” in Lithography Asia 2009, vol. 7520 of Proc. SPIE, p. 75200X (2009).
- T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H.-J. Stock, A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” in Photomask Technology 2010, vol. 7823 of Proc. SPIE, p. 78233X (2010).
- X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography,” Opt. Express17(7), 5783–5793 (2009). [CrossRef] [PubMed]
- J.-C. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” in Optical Microlithography XXIV, vol. 7973 of Proc. SPIE, p. 797320 (2011).
- Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process.99, 1–10 (2011).
- A. K. Wong, Optical Imaging in Projection Microlithography (SPIE, 2005). [CrossRef]
- Y. Granik, “Source optimization for image fidelity and throughput,” J. Microlith. Microfab. Microsys.3(4), 509–522 (2004). [CrossRef]
- J.-C. Yu and P. Yu, “Impacts of cost functions on inverse lithography patterning,” Opt. Express18(22), 23331–23342 (2010). [CrossRef] [PubMed]
- D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Probl.19(6), 165–187 (2003). [CrossRef]
- M. K. Ng, H. Shen, E. Y. Lam, and L. Zhang, “A total variation regularization based super-resolution reconstruction algorithm for digital video,” EURASIP Journal on Advances in Signal Processing2007, Article ID 74,585 (2007). [CrossRef]
- R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).
- C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley, 2007). [CrossRef]
- N. Jia, A. K. Wong, and E. Y. Lam, “Robust mask design with defocus variation using inverse synthesis,” in Lithography Asia, vol. 7140 of Proc. SPIE, p. 71401W (2008).
- J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer, 2006).
- N. Jia and E. Y. Lam, “Performance analysis of pixelated source-mask optimization for optical microlithography,” in IEEE International Conference on Electron Devices and Solid-State Circuits (2010).
- L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds., vol. 7122 of Proc. SPIE, p. 71221W (2008).
- R. J. Socha, D. J. Van Den Broeke, S. D. Hsu, J. F. Chen, T. L. Laidig, N. P. Corcoran, U. Hollerbach, K. E. Wampler, X. Shi, and W. E. Conley, “Contact hole reticle optimization by using interference mapping lithography (IML),” in Photomask and Next–Generation Lithography Mask Technology XI, H. Tanabe, ed., vol. 5446 of Proc. SPIE, pp. 516–534 (2004). [PubMed]
- L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ILT): a natural solution for model-based SRAF at 45nm and 32nm,” in Photomask and Next-Generation Lithography Mask Technology XIV, vol. 6607 of Proc. SPIE, p. 660739 (2007).
- X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography,” Opt. Express17(7), 5783–5793 (2009). [CrossRef] [PubMed]
- X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express15(23), 15066–15079 (2007). [CrossRef] [PubMed]
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K.-H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” in Lithography Asia 2009, vol. 7520 of Proc. SPIE, p. 75200X (2009).
- L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds., vol. 7122 of Proc. SPIE, p. 71221W (2008).
- A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsys.1(1), 13–30 (2002). [CrossRef]
- M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact patterns,” Microelectron. Eng.41–42, 91–96 (1998). [CrossRef]
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K.-H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” in Lithography Asia 2009, vol. 7520 of Proc. SPIE, p. 75200X (2009).
- L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds., vol. 7122 of Proc. SPIE, p. 71221W (2008).
- S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express16(19), 14,46–14760 (2008). [CrossRef]
- D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Probl.19(6), 165–187 (2003). [CrossRef]
- L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K.-H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” in Lithography Asia 2009, vol. 7520 of Proc. SPIE, p. 75200X (2009).
- R. J. Socha, D. J. Van Den Broeke, S. D. Hsu, J. F. Chen, T. L. Laidig, N. P. Corcoran, U. Hollerbach, K. E. Wampler, X. Shi, and W. E. Conley, “Contact hole reticle optimization by using interference mapping lithography (IML),” in Photomask and Next–Generation Lithography Mask Technology XI, H. Tanabe, ed., vol. 5446 of Proc. SPIE, pp. 516–534 (2004). [PubMed]
- R. J. Socha, D. J. Van Den Broeke, S. D. Hsu, J. F. Chen, T. L. Laidig, N. P. Corcoran, U. Hollerbach, K. E. Wampler, X. Shi, and W. E. Conley, “Contact hole reticle optimization by using interference mapping lithography (IML),” in Photomask and Next–Generation Lithography Mask Technology XI, H. Tanabe, ed., vol. 5446 of Proc. SPIE, pp. 516–534 (2004). [PubMed]
- R. J. Socha, D. J. Van Den Broeke, S. D. Hsu, J. F. Chen, T. L. Laidig, N. P. Corcoran, U. Hollerbach, K. E. Wampler, X. Shi, and W. E. Conley, “Contact hole reticle optimization by using interference mapping lithography (IML),” in Photomask and Next–Generation Lithography Mask Technology XI, H. Tanabe, ed., vol. 5446 of Proc. SPIE, pp. 516–534 (2004). [PubMed]
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds., vol. 7122 of Proc. SPIE, p. 71221W (2008).
- L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K.-H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” in Lithography Asia 2009, vol. 7520 of Proc. SPIE, p. 75200X (2009).
- T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H.-J. Stock, A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” in Photomask Technology 2010, vol. 7823 of Proc. SPIE, p. 78233X (2010).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- T. Fühner, A. Erdmann, and S. Seifert, “Direct optimization approach for lithographic process conditions,” J. Microlith. Microfab. Microsys.6(3), 031006 (2007).
- R. Socha, M. Eurlings, F. Nowak, and J. Finders, “Illumination optimization of periodic patterns for maximum process window,” Microelectron. Eng.61–62, 57–64 (2002). [CrossRef]
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- R. Socha, M. Eurlings, F. Nowak, and J. Finders, “Illumination optimization of periodic patterns for maximum process window,” Microelectron. Eng.61–62, 57–64 (2002). [CrossRef]
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsys.1(1), 13–30 (2002). [CrossRef]
- T. Fühner, A. Erdmann, and S. Seifert, “Direct optimization approach for lithographic process conditions,” J. Microlith. Microfab. Microsys.6(3), 031006 (2007).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K.-H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” in Lithography Asia 2009, vol. 7520 of Proc. SPIE, p. 75200X (2009).
- L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds., vol. 7122 of Proc. SPIE, p. 71221W (2008).
- R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).
- Y. Granik, “Source optimization for image fidelity and throughput,” J. Microlith. Microfab. Microsys.3(4), 509–522 (2004). [CrossRef]
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K.-H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” in Lithography Asia 2009, vol. 7520 of Proc. SPIE, p. 75200X (2009).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsys.1(1), 13–30 (2002). [CrossRef]
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- R. J. Socha, D. J. Van Den Broeke, S. D. Hsu, J. F. Chen, T. L. Laidig, N. P. Corcoran, U. Hollerbach, K. E. Wampler, X. Shi, and W. E. Conley, “Contact hole reticle optimization by using interference mapping lithography (IML),” in Photomask and Next–Generation Lithography Mask Technology XI, H. Tanabe, ed., vol. 5446 of Proc. SPIE, pp. 516–534 (2004). [PubMed]
- R. J. Socha, D. J. Van Den Broeke, S. D. Hsu, J. F. Chen, T. L. Laidig, N. P. Corcoran, U. Hollerbach, K. E. Wampler, X. Shi, and W. E. Conley, “Contact hole reticle optimization by using interference mapping lithography (IML),” in Photomask and Next–Generation Lithography Mask Technology XI, H. Tanabe, ed., vol. 5446 of Proc. SPIE, pp. 516–534 (2004). [PubMed]
- L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds., vol. 7122 of Proc. SPIE, p. 71221W (2008).
- L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K.-H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” in Lithography Asia 2009, vol. 7520 of Proc. SPIE, p. 75200X (2009).
- Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express19(6), 5511–5521 (2011). [CrossRef] [PubMed]
- N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt.12(4), 045601 (2010). [CrossRef]
- N. Jia and E. Y. Lam, “Performance analysis of pixelated source-mask optimization for optical microlithography,” in IEEE International Conference on Electron Devices and Solid-State Circuits (2010).
- N. Jia, A. K. Wong, and E. Y. Lam, “Robust mask design with defocus variation using inverse synthesis,” in Lithography Asia, vol. 7140 of Proc. SPIE, p. 71401W (2008).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H.-J. Stock, A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” in Photomask Technology 2010, vol. 7823 of Proc. SPIE, p. 78233X (2010).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H.-J. Stock, A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” in Photomask Technology 2010, vol. 7823 of Proc. SPIE, p. 78233X (2010).
- A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsys.1(1), 13–30 (2002). [CrossRef]
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- R. J. Socha, D. J. Van Den Broeke, S. D. Hsu, J. F. Chen, T. L. Laidig, N. P. Corcoran, U. Hollerbach, K. E. Wampler, X. Shi, and W. E. Conley, “Contact hole reticle optimization by using interference mapping lithography (IML),” in Photomask and Next–Generation Lithography Mask Technology XI, H. Tanabe, ed., vol. 5446 of Proc. SPIE, pp. 516–534 (2004). [PubMed]
- Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express19(6), 5511–5521 (2011). [CrossRef] [PubMed]
- N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt.12(4), 045601 (2010). [CrossRef]
- E. Y. Lam and A. K. Wong, “Computation lithography: virtual reality and virtual virtuality,” Opt. Express17(15), 12259–12268 (2009). [CrossRef] [PubMed]
- Y. Shen, N. Wong, and E. Y. Lam, “Level-set-based inverse lithography for photomask synthesis,” Opt. Express17(26), 23690–23701 (2009). [CrossRef]
- S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express16(19), 14,46–14760 (2008). [CrossRef]
- M. K. Ng, H. Shen, E. Y. Lam, and L. Zhang, “A total variation regularization based super-resolution reconstruction algorithm for digital video,” EURASIP Journal on Advances in Signal Processing2007, Article ID 74,585 (2007). [CrossRef]
- N. Jia, A. K. Wong, and E. Y. Lam, “Robust mask design with defocus variation using inverse synthesis,” in Lithography Asia, vol. 7140 of Proc. SPIE, p. 71401W (2008).
- N. Jia and E. Y. Lam, “Performance analysis of pixelated source-mask optimization for optical microlithography,” in IEEE International Conference on Electron Devices and Solid-State Circuits (2010).
- L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ILT): a natural solution for model-based SRAF at 45nm and 32nm,” in Photomask and Next-Generation Lithography Mask Technology XIV, vol. 6607 of Proc. SPIE, p. 660739 (2007).
- X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography,” Opt. Express17(7), 5783–5793 (2009). [CrossRef] [PubMed]
- X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express15(23), 15066–15079 (2007). [CrossRef] [PubMed]
- C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley, 2007). [CrossRef]
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- A. Poonawala and P. Milanfar, “Mask design for optical microlithography — an inverse imaging problem,” IEEE Trans. Image Process.16(3), 774–788 (2007). [CrossRef] [PubMed]
- T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H.-J. Stock, A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” in Photomask Technology 2010, vol. 7823 of Proc. SPIE, p. 78233X (2010).
- M. K. Ng, H. Shen, E. Y. Lam, and L. Zhang, “A total variation regularization based super-resolution reconstruction algorithm for digital video,” EURASIP Journal on Advances in Signal Processing2007, Article ID 74,585 (2007). [CrossRef]
- J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer, 2006).
- R. Socha, M. Eurlings, F. Nowak, and J. Finders, “Illumination optimization of periodic patterns for maximum process window,” Microelectron. Eng.61–62, 57–64 (2002). [CrossRef]
- L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K.-H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” in Lithography Asia 2009, vol. 7520 of Proc. SPIE, p. 75200X (2009).
- L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds., vol. 7122 of Proc. SPIE, p. 71221W (2008).
- L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ILT): a natural solution for model-based SRAF at 45nm and 32nm,” in Photomask and Next-Generation Lithography Mask Technology XIV, vol. 6607 of Proc. SPIE, p. 660739 (2007).
- L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K.-H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” in Lithography Asia 2009, vol. 7520 of Proc. SPIE, p. 75200X (2009).
- Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process.99, 1–10 (2011).
- A. Poonawala and P. Milanfar, “Mask design for optical microlithography — an inverse imaging problem,” IEEE Trans. Image Process.16(3), 774–788 (2007). [CrossRef] [PubMed]
- T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H.-J. Stock, A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” in Photomask Technology 2010, vol. 7823 of Proc. SPIE, p. 78233X (2010).
- M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact patterns,” Microelectron. Eng.41–42, 91–96 (1998). [CrossRef]
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsys.1(1), 13–30 (2002). [CrossRef]
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- M. Rothschild, “A roadmap for optical lithography,” Opt. Photon. News21(6), 26–31 (2010). [CrossRef]
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- T. Fühner, A. Erdmann, and S. Seifert, “Direct optimization approach for lithographic process conditions,” J. Microlith. Microfab. Microsys.6(3), 031006 (2007).
- M. K. Ng, H. Shen, E. Y. Lam, and L. Zhang, “A total variation regularization based super-resolution reconstruction algorithm for digital video,” EURASIP Journal on Advances in Signal Processing2007, Article ID 74,585 (2007). [CrossRef]
- R. J. Socha, D. J. Van Den Broeke, S. D. Hsu, J. F. Chen, T. L. Laidig, N. P. Corcoran, U. Hollerbach, K. E. Wampler, X. Shi, and W. E. Conley, “Contact hole reticle optimization by using interference mapping lithography (IML),” in Photomask and Next–Generation Lithography Mask Technology XI, H. Tanabe, ed., vol. 5446 of Proc. SPIE, pp. 516–534 (2004). [PubMed]
- A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsys.1(1), 13–30 (2002). [CrossRef]
- R. Socha, M. Eurlings, F. Nowak, and J. Finders, “Illumination optimization of periodic patterns for maximum process window,” Microelectron. Eng.61–62, 57–64 (2002). [CrossRef]
- R. J. Socha, D. J. Van Den Broeke, S. D. Hsu, J. F. Chen, T. L. Laidig, N. P. Corcoran, U. Hollerbach, K. E. Wampler, X. Shi, and W. E. Conley, “Contact hole reticle optimization by using interference mapping lithography (IML),” in Photomask and Next–Generation Lithography Mask Technology XI, H. Tanabe, ed., vol. 5446 of Proc. SPIE, pp. 516–534 (2004). [PubMed]
- T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H.-J. Stock, A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” in Photomask Technology 2010, vol. 7823 of Proc. SPIE, p. 78233X (2010).
- T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H.-J. Stock, A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” in Photomask Technology 2010, vol. 7823 of Proc. SPIE, p. 78233X (2010).
- D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Probl.19(6), 165–187 (2003). [CrossRef]
- T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H.-J. Stock, A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” in Photomask Technology 2010, vol. 7823 of Proc. SPIE, p. 78233X (2010).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K.-H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” in Lithography Asia 2009, vol. 7520 of Proc. SPIE, p. 75200X (2009).
- L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds., vol. 7122 of Proc. SPIE, p. 71221W (2008).
- R. J. Socha, D. J. Van Den Broeke, S. D. Hsu, J. F. Chen, T. L. Laidig, N. P. Corcoran, U. Hollerbach, K. E. Wampler, X. Shi, and W. E. Conley, “Contact hole reticle optimization by using interference mapping lithography (IML),” in Photomask and Next–Generation Lithography Mask Technology XI, H. Tanabe, ed., vol. 5446 of Proc. SPIE, pp. 516–534 (2004). [PubMed]
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- R. J. Socha, D. J. Van Den Broeke, S. D. Hsu, J. F. Chen, T. L. Laidig, N. P. Corcoran, U. Hollerbach, K. E. Wampler, X. Shi, and W. E. Conley, “Contact hole reticle optimization by using interference mapping lithography (IML),” in Photomask and Next–Generation Lithography Mask Technology XI, H. Tanabe, ed., vol. 5446 of Proc. SPIE, pp. 516–534 (2004). [PubMed]
- Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process.99, 1–10 (2011).
- M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact patterns,” Microelectron. Eng.41–42, 91–96 (1998). [CrossRef]
- E. Y. Lam and A. K. Wong, “Computation lithography: virtual reality and virtual virtuality,” Opt. Express17(15), 12259–12268 (2009). [CrossRef] [PubMed]
- S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express16(19), 14,46–14760 (2008). [CrossRef]
- A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsys.1(1), 13–30 (2002). [CrossRef]
- N. Jia, A. K. Wong, and E. Y. Lam, “Robust mask design with defocus variation using inverse synthesis,” in Lithography Asia, vol. 7140 of Proc. SPIE, p. 71401W (2008).
- A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001). [CrossRef]
- A. K. Wong, Optical Imaging in Projection Microlithography (SPIE, 2005). [CrossRef]
- R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).
- J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer, 2006).
- L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds., vol. 7122 of Proc. SPIE, p. 71221W (2008).
- L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K.-H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” in Lithography Asia 2009, vol. 7520 of Proc. SPIE, p. 75200X (2009).
- M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact patterns,” Microelectron. Eng.41–42, 91–96 (1998). [CrossRef]
- J.-C. Yu and P. Yu, “Impacts of cost functions on inverse lithography patterning,” Opt. Express18(22), 23331–23342 (2010). [CrossRef] [PubMed]
- J.-C. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” in Optical Microlithography XXIV, vol. 7973 of Proc. SPIE, p. 797320 (2011).
- J.-C. Yu and P. Yu, “Impacts of cost functions on inverse lithography patterning,” Opt. Express18(22), 23331–23342 (2010). [CrossRef] [PubMed]
- J.-C. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” in Optical Microlithography XXIV, vol. 7973 of Proc. SPIE, p. 797320 (2011).
- Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process.99, 1–10 (2011).
- Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process.99, 1–10 (2011).
- M. K. Ng, H. Shen, E. Y. Lam, and L. Zhang, “A total variation regularization based super-resolution reconstruction algorithm for digital video,” EURASIP Journal on Advances in Signal Processing2007, Article ID 74,585 (2007). [CrossRef]
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
EURASIP Journal on Advances in Signal Processing
- M. K. Ng, H. Shen, E. Y. Lam, and L. Zhang, “A total variation regularization based super-resolution reconstruction algorithm for digital video,” EURASIP Journal on Advances in Signal Processing2007, Article ID 74,585 (2007). [CrossRef]
IEEE Trans. Image Process.
- Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process.99, 1–10 (2011).
- A. Poonawala and P. Milanfar, “Mask design for optical microlithography — an inverse imaging problem,” IEEE Trans. Image Process.16(3), 774–788 (2007). [CrossRef] [PubMed]
Inverse Probl.
- D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Probl.19(6), 165–187 (2003). [CrossRef]
J. Microlith. Microfab. Microsys.
- Y. Granik, “Source optimization for image fidelity and throughput,” J. Microlith. Microfab. Microsys.3(4), 509–522 (2004). [CrossRef]
- A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsys.1(1), 13–30 (2002). [CrossRef]
- T. Fühner, A. Erdmann, and S. Seifert, “Direct optimization approach for lithographic process conditions,” J. Microlith. Microfab. Microsys.6(3), 031006 (2007).
J. Opt.
- N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt.12(4), 045601 (2010). [CrossRef]
Microelectron. Eng.
- M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact patterns,” Microelectron. Eng.41–42, 91–96 (1998). [CrossRef]
- R. Socha, M. Eurlings, F. Nowak, and J. Finders, “Illumination optimization of periodic patterns for maximum process window,” Microelectron. Eng.61–62, 57–64 (2002). [CrossRef]
Opt. Express
- X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography,” Opt. Express17(7), 5783–5793 (2009). [CrossRef] [PubMed]
- Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express19(6), 5511–5521 (2011). [CrossRef] [PubMed]
- Y. Shen, N. Wong, and E. Y. Lam, “Level-set-based inverse lithography for photomask synthesis,” Opt. Express17(26), 23690–23701 (2009). [CrossRef]
- X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express15(23), 15066–15079 (2007). [CrossRef] [PubMed]
- S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express16(19), 14,46–14760 (2008). [CrossRef]
- J.-C. Yu and P. Yu, “Impacts of cost functions on inverse lithography patterning,” Opt. Express18(22), 23331–23342 (2010). [CrossRef] [PubMed]
- E. Y. Lam and A. K. Wong, “Computation lithography: virtual reality and virtual virtuality,” Opt. Express17(15), 12259–12268 (2009). [CrossRef] [PubMed]
Opt. Photon. News
- M. Rothschild, “A roadmap for optical lithography,” Opt. Photon. News21(6), 26–31 (2010). [CrossRef]
Other
- A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001). [CrossRef]
- L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ILT): a natural solution for model-based SRAF at 45nm and 32nm,” in Photomask and Next-Generation Lithography Mask Technology XIV, vol. 6607 of Proc. SPIE, p. 660739 (2007).
- J.-C. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” in Optical Microlithography XXIV, vol. 7973 of Proc. SPIE, p. 797320 (2011).
- K. Lai, S. Bagheri, K. Tian, J. Tirapu-Azpiroz, S. Halle, G. McIntyre, D. Corliss, A. E. Rosenbluth, D. Melville, A. Wagner, M. Burkhardt, J. Hoffnagle, Y. Kim, G. Burr, M. Fakhry, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXII, vol. 7274 of Proc. SPIE, p. 72740A (2009).
- L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K.-H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” in Lithography Asia 2009, vol. 7520 of Proc. SPIE, p. 75200X (2009).
- T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H.-J. Stock, A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” in Photomask Technology 2010, vol. 7823 of Proc. SPIE, p. 78233X (2010).
- A. K. Wong, Optical Imaging in Projection Microlithography (SPIE, 2005). [CrossRef]
- R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).
- C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley, 2007). [CrossRef]
- N. Jia, A. K. Wong, and E. Y. Lam, “Robust mask design with defocus variation using inverse synthesis,” in Lithography Asia, vol. 7140 of Proc. SPIE, p. 71401W (2008).
- J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer, 2006).
- N. Jia and E. Y. Lam, “Performance analysis of pixelated source-mask optimization for optical microlithography,” in IEEE International Conference on Electron Devices and Solid-State Circuits (2010).
- L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO),” in Photomask Technology, H. Kawahira and L. S. Zurbrick, eds., vol. 7122 of Proc. SPIE, p. 71221W (2008).
- R. J. Socha, D. J. Van Den Broeke, S. D. Hsu, J. F. Chen, T. L. Laidig, N. P. Corcoran, U. Hollerbach, K. E. Wampler, X. Shi, and W. E. Conley, “Contact hole reticle optimization by using interference mapping lithography (IML),” in Photomask and Next–Generation Lithography Mask Technology XI, H. Tanabe, ed., vol. 5446 of Proc. SPIE, pp. 516–534 (2004). [PubMed]
2011, Peng, IEEE Trans. Image Process.
- Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process.99, 1–10 (2011).
- N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt.12(4), 045601 (2010). [CrossRef]
- M. Rothschild, “A roadmap for optical lithography,” Opt. Photon. News21(6), 26–31 (2010). [CrossRef]
- S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express16(19), 14,46–14760 (2008). [CrossRef]
- T. Fühner, A. Erdmann, and S. Seifert, “Direct optimization approach for lithographic process conditions,” J. Microlith. Microfab. Microsys.6(3), 031006 (2007).
- A. Poonawala and P. Milanfar, “Mask design for optical microlithography — an inverse imaging problem,” IEEE Trans. Image Process.16(3), 774–788 (2007). [CrossRef] [PubMed]
- M. K. Ng, H. Shen, E. Y. Lam, and L. Zhang, “A total variation regularization based super-resolution reconstruction algorithm for digital video,” EURASIP Journal on Advances in Signal Processing2007, Article ID 74,585 (2007). [CrossRef]
- Y. Granik, “Source optimization for image fidelity and throughput,” J. Microlith. Microfab. Microsys.3(4), 509–522 (2004). [CrossRef]
- D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Probl.19(6), 165–187 (2003). [CrossRef]
- R. Socha, M. Eurlings, F. Nowak, and J. Finders, “Illumination optimization of periodic patterns for maximum process window,” Microelectron. Eng.61–62, 57–64 (2002). [CrossRef]
- A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsys.1(1), 13–30 (2002). [CrossRef]
- M. Burkhardt, A. Yen, C. Progler, and G. Wells, “Illuminator design for the printing of regular contact patterns,” Microelectron. Eng.41–42, 91–96 (1998). [CrossRef]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
Related Journal Articles
- Computation lithography: virtual reality and virtual virtuality (OE)
- Level-set-based inverse lithography for photomask synthesis (OE)
- Robust level-set-based inverse lithography (OE)
- Hotspot-aware fast source and mask optimization (OE)
- Efficient source and mask optimization with augmented Lagrangian methods in optical lithography (OE)
Related Conference Papers
- Microlithographic lens for DUV scanner
- High NA projection lens designs for exposure tools
- Efficient source mask optimization with Zernike polynomial function-based source representation
- Some Extremes in Conventional Lens Design
- Some Extremes in Conventional Lens Design
- Plenoptic System Response and Image Formation
- Plenoptic System Response and Image Formation
« Previous Article | Next Article »
OSA is a member of CrossRef.
- Firefox 11+
- Google Chrome 17+
- Internet Explorer 9+
- Safari 5+