OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19486–19494

High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization

Yaoyu Cao, Zongsong Gan, Baohua Jia, Richard A. Evans, and Min Gu  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19486-19494 (2011)
http://dx.doi.org/10.1364/OE.19.019486


View Full Text Article

Enhanced HTML    Acrobat PDF (970 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ethoxylated bis-phenol-A dimethacrylate based photoresin BPE-100 of relatively high photosensitivity and modulus is used for the creation of sub-50 nm features. This is achieved by using the direct laser writing technique based on the single-photon photoinhibited polymerization. The super-resolution feature is realized by overlapping two laser beams of different wavelengths to enable the wavelength-controlled activation of photoinitiating and photoinhibiting processes in the polymerization. The increased photosensitivity of the photoresin promotes a fast curing speed and enhances the photopolymerization efficiency. Using the photoresin BPE-100, we achieve 40 nm dots for the first time in the super-resolution fabrication technique based on the photoinhibited polymerization, and a minimum linewidth of 130 nm. The influence of the power of the inhibiting laser and the exposure time on the feature size is studied and the results agree well with the prediction obtained from a simulation based on a non-steady-state kinetic model.

© 2011 OSA

OCIS Codes
(140.3450) Lasers and laser optics : Laser-induced chemistry
(160.5470) Materials : Polymers
(220.4610) Optical design and fabrication : Optical fabrication
(220.4241) Optical design and fabrication : Nanostructure fabrication
(160.5335) Materials : Photosensitive materials

ToC Category:
Laser Microfabrication

History
Original Manuscript: July 5, 2011
Revised Manuscript: August 12, 2011
Manuscript Accepted: September 5, 2011
Published: September 22, 2011

Citation
Yaoyu Cao, Zongsong Gan, Baohua Jia, Richard A. Evans, and Min Gu, "High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization," Opt. Express 19, 19486-19494 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19486


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999). [CrossRef]
  2. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004). [CrossRef] [PubMed]
  3. K. Choi, J. W. M. Chon, M. Gu, N. Malic, and R. A. Evans, “Low-distortion holographic data storage media using free-radical ring-opening polymerization,” Adv. Funct. Mater.19(22), 3560–3566 (2009). [CrossRef]
  4. L. Li, E. Gershgoren, G. Kumi, W. Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008). [CrossRef]
  5. S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express17(21), 18525–18532 (2009). [CrossRef] [PubMed]
  6. Z. Xiong, X. Z. Dong, W. Q. Chen, and X. M. Duan, “Fast solvent-driven micropump fabricated by two-photon microfabrication,” Appl. Phys., A Mater. Sci. Process.93(2), 447–452 (2008). [CrossRef]
  7. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science324(5929), 913–917 (2009). [CrossRef] [PubMed]
  8. H. B. Sun, K. Takada, M. S. Kim, K. S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett.83(6), 1104–1106 (2003). [CrossRef]
  9. M. Z. Sun, Y. Li, H. B. Cui, H. Yang, and Q. H. Gong, “Minimum spacing between suspended nanorods determined by stiction during two-photon polymerization,” Appl. Phys., A Mater. Sci. Process.100(1), 177–180 (2010). [CrossRef]
  10. C. Decker and K. Moussa, “Real-time kinetic-study of laser-induced polymerization,” Macromolecules22(12), 4455–4462 (1989). [CrossRef]
  11. G. Odian, Principles of Polymerization, Fourth Edition (John Wiley & Sons, Inc.: Hoboken, New Jersey 2004).
  12. H. Q. Hou, J. G. Jiang, and M. X. Ding, “Ester-type precursor of polyimide and photosensitivity,” Eur. Polym. J.35(11), 1993–2000 (1999). [CrossRef]
  13. J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express12(21), 5221–5228 (2004). [CrossRef] [PubMed]
  14. I. V. Khudyakov, W. S. Fox, and M. B. Purvis, “Photopolymerization of vinyl acrylate studied by photodsc,” Ind. Eng. Chem. Res.40(14), 3092–3097 (2001). [CrossRef]
  15. L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater.15(2), 209–216 (2005). [CrossRef]
  16. M. Trujillo-Lemon, J. H. Ge, H. Lu, J. Tanaka, and J. W. Stansbury, “Dimethacrylate derivatives of dimer acid,” J. Polym. Sci., Part A: Polym. Chem.44(12), 3921–3929 (2006). [CrossRef]
  17. S. H. Wu, M. Straub, and M. Gu, “Single-monomer acrylate-based resin for three-dimensional photonic crystal fabrication,” Polymer (Guildf.)46(23), 10246–10255 (2005). [CrossRef]
  18. T. A. Pham, P. Kim, M. Kwak, K. Y. Suh, and D. P. Kim, “Inorganic polymer photoresist for direct ceramic patterning by photolithography,” Chem. Commun. (Camb.)•••(39), 4021–4023 (2007). [CrossRef] [PubMed]
  19. Z. S. Gan, Y. Y. Cao, B. H. Jia, and M. Gu, “Dynamic modeling of photoinhibited photopolymerization for superresolution photolithography,” under preparation.
  20. E. T. Denisov, T. G. Denisova, and T. S. Pokidova, Handbook of free radical initiators (John Wiley & Sons, Inc.: Hoboken, New Jersey 2004).
  21. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part i. Modeling,” J. Opt. Soc. Am. B26(9), 1736–1745 (2009). [CrossRef]
  22. M. Gu, Advanced optical imaging theory (Springer: Verlag Berlin Heidelberg 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited