OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19542–19550

Femtosecond laser direct-writing of waveguide Bragg gratings in a quasi cumulative heating regime

Christopher Miese, Michael J. Withford, and Alexander Fuerbach  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19542-19550 (2011)
http://dx.doi.org/10.1364/OE.19.019542


View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Waveguide Bragg gratings (WBGs) were directly inscribed into Alkaline Earth Boro-Aluminosilicate glass samples in a single process step at high fabrication speeds. We utilized a 5.1 MHz femtosecond oscillator to exploit high repetition rate heat accumulation effects. The pulse energy was modulated using a Pockels cell in order to fabricate waveguides that contain a periodic array of nano-structures inside their core. We have demonstrated, for the first time, that the transient build-up of heat accumulation within the sample can lead to the formation of a permanent nano-void. This effect can be exploited to fabricate WBGs at high speeds.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Integrated Optics

History
Original Manuscript: July 19, 2011
Revised Manuscript: September 8, 2011
Manuscript Accepted: September 8, 2011
Published: September 22, 2011

Citation
Christopher Miese, Michael J. Withford, and Alexander Fuerbach, "Femtosecond laser direct-writing of waveguide Bragg gratings in a quasi cumulative heating regime," Opt. Express 19, 19542-19550 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19542


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  3. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett.31(18), 2690–2691 (2006). [CrossRef] [PubMed]
  4. H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32(17), 2559–2561 (2007). [CrossRef] [PubMed]
  5. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett.33(9), 956–958 (2008). [CrossRef] [PubMed]
  6. S. Nolte, M. Will, J. Burghoff, and A. Tunnermann, “Ultrafast laser processing: New options for three-dimensional photonic structures,” J. Mod. Opt.51(16), 2533–2542 (2004). [CrossRef]
  7. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express13(2), 612–620 (2005). [CrossRef] [PubMed]
  8. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  9. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13(15), 5676–5681 (2005). [CrossRef] [PubMed]
  10. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B20(7), 1559–1567 (2003). [CrossRef]
  11. H. Kakiuchida, K. Saito, and A. J. Ikushima, “Refractive index, density and polarizability of silica glass with various fictive temperatures,” Jpn. J. Appl. Phys.43(6A), L743–L745 (2004). [CrossRef]
  12. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16(24), 20029–20037 (2008). [CrossRef] [PubMed]
  13. D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011). [CrossRef]
  14. C. Miese, A. Fuerbach, and M. Withford, “Dynamics of waveguide writing using a high pulse energy (600 nJ) MHz femtosecond oscillator,” in CLEO/Europe and EQEC 2009 Conference Digest (Optical Society of America, 2009), paper CM_P12.
  15. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003). [CrossRef]
  16. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, San Diego, Calif., 1998.
  17. A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids209(1-2), 166–174 (1997). [CrossRef]
  18. C. Lu, J. Cui, and Y. Cui, “Reflection spectra of fiber Bragg gratings with random fluctuations,” Opt. Fiber Technol.14(2), 97–101 (2008). [CrossRef]
  19. M. Lenzner, “Femtosecond laser-induced damage of dielectrics,” Int. J. Mod. Phys. B13(13), 1559–1578 (1999). [CrossRef]
  20. B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express1(4), 766–782 (2011). [CrossRef]
  21. S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids355(18-21), 1160–1162 (2009). [CrossRef]
  22. L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, “Laser-matter interaction in transparent materials: confined micro-explosion and jet formation,” in Extreme Photonics Applications (Springer, 2010), pp. 121–146.
  23. E. G. Gamaly, S. Juodkazis, H. Misawa, B. Luther-Davies, A. V. Rode, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Formation of nano-voids in transparent dielectrics by femtosecond lasers,” Curr. Appl. Phys.8(3-4), 412–415 (2008). [CrossRef]
  24. L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108(4), 043523 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited