OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19572–19581

Nondiffracting Bessel plasmons

Carlos J. Zapata-Rodríguez, Slobodan Vuković, Milivoj R. Belić, David Pastor, and Juan J. Miret  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19572-19581 (2011)
http://dx.doi.org/10.1364/OE.19.019572


View Full Text Article

Enhanced HTML    Acrobat PDF (2940 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the existence of nondiffracting Bessel surface plasmon polaritons (SPPs), advancing at either superluminal or subluminal phase velocities. These wave fields feature deep subwavelength FWHM, but are supported by high-order homogeneous SPPs of a metal/dielectric (MD) superlattice. The beam axis can be relocated to any MD interface, by interfering multiple converging SPPs with controlled phase matching. Dissipative effects in metals lead to a diffraction-free regime that is limited by the energy attenuation length. However, the ultra-localization of the diffracted wave field might still be maintained by more than one order of magnitude.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.5500) Other areas of optics : Propagation

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 28, 2011
Revised Manuscript: September 2, 2011
Manuscript Accepted: September 2, 2011
Published: September 22, 2011

Citation
Carlos J. Zapata-Rodríguez, Slobodan Vuković, Milivoj R. Belić, David Pastor, and Juan J. Miret, "Nondiffracting Bessel plasmons," Opt. Express 19, 19572-19581 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19572


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A4, 651–654 (1987). [CrossRef]
  2. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58, 1499–1501 (1987). [CrossRef] [PubMed]
  3. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature419(6903), 145–147 (2002). [CrossRef] [PubMed]
  4. J. Jezek, T. Cizmar, V. Nedela, and P. Zemanek, “Formation of long and thin polymer fiber using nondiffracting beam,” Opt. Express14(19), 8506–8515 (2006). [CrossRef] [PubMed]
  5. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express18(2), 566–574 (2010). [CrossRef] [PubMed]
  6. B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E55(3, Part B), 3539–3545 (1997). [CrossRef]
  7. Y. Kartashov, V. Vysloukh, and L. Torner, “Rotary solitons in Bessel optical lattices,” Phys. Rev. Lett.93(9), 093904 (2004). [CrossRef] [PubMed]
  8. M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E68, 016613 (2003). [CrossRef]
  9. C. J. Zapata-Rodríguez and M. A. Porras, “X-wave bullets with negative group velocity in vacuum,” Opt. Lett.31(23), 3532–3534 (2006). [CrossRef] [PubMed]
  10. T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett.70, 1401–1404 (1993). [CrossRef] [PubMed]
  11. L. Van Dao, K. B. Dinh, and P. Hannaford, “Generation of extreme ultraviolet radiation with a Bessel–Gaussian beam,” Appl. Phys. Lett.95(13) (2009). [CrossRef]
  12. J. Fan, E. Parra, and H. Milchberg, “Resonant self-trapping and absorption of intense Bessel beams,” Phys. Rev. Lett.84(14), 3085–3088 (2000). [CrossRef] [PubMed]
  13. P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett.99(22), 223902 (2007). [CrossRef]
  14. D. Faccio and P. Di Trapani, “Conical-wave nonlinear optics: From Raman conversion to extreme UV generation,” Laser Phys.18(3), 253–262 (2008). [CrossRef]
  15. H. Kano, D. Nomura, and H. Shibuya, “Excitation of surface-plasmon polaritons by use of a zeroth-order Bessel beam,” Appl. Opt.43(12), 2409–2411 (2004). [CrossRef] [PubMed]
  16. K. J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy,” Opt. Lett.34(7), 971–973 (2009). [CrossRef] [PubMed]
  17. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett.31(11), 1726–1728 (2006). [CrossRef] [PubMed]
  18. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. C. d. Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett.32(17), 2535–2537 (2007). [CrossRef] [PubMed]
  19. W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett.34(6), 722–724 (2009). [CrossRef] [PubMed]
  20. A. Shaarawi, B. Tawfik, and I. Besieris, “Superluminal advanced transmission of X waves undergoing frustrated total internal reflection: the evanescent fields and the Goos–Hanchen effect,” Phys. Rev. E66(4, Part 2), 046626 (2002). [CrossRef]
  21. S. Longhi, K. Janner, and P. Laporta, “Propagating pulsed Bessel beams in periodic media,” J. Opt. B6, 477–481 (2004). [CrossRef]
  22. W. Williams and J. Pendry, “Generating Bessel beams by use of localized modes,” J. Opt. Soc. Am. A22(5), 992–997 (2005). [CrossRef]
  23. C. J. Zapata-Rodríguez, M. T. Caballero, and J. J. Miret, “Angular spectrum of diffracted wave fields with apochromatic correction,” Opt. Lett.33, 1753–1755 (2008). [CrossRef] [PubMed]
  24. A. V. Novitsky and L. M. Barkovsky, “Total internal reflection of vector Bessel beams: Imbert-Fedorov shift and intensity transformation,” J. Opt. A10(7), 075006 (2008). [CrossRef]
  25. V. N. Belyi, N. S. Kazak, S. N. Kurilkina, and N. A. Khilo, “Generation of TE- and TH-polarized Bessel beams using one-dimensional photonic crystal,” Opt. Commun.282(10), 1998–2008 (2009). [CrossRef]
  26. D. Mugnai and P. Spalla, “Electromagnetic propagation of Bessel-like localized waves in the presence of absorbing media,” Opt. Commun.282, 4668–4671 (2009). [CrossRef]
  27. G. Rui, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Evanescent Bessel beam generation through filtering highly focused cylindrical vector beams with a defect mode one-dimensional photonic crystal,” Opt. Commun.283(10), 2272–2276 (2010). [CrossRef]
  28. C. J. Zapata-Rodríguez and J. J. Miret, “Diffraction-free beams in thin films,” J. Opt. Soc. Am. A27, 663–670 (2010). [CrossRef]
  29. C. Zapata-Rodríguez and J. Miret, “Subwavelength nondiffractting beams in multilayered media,” Appl. Phys. A103, 699–702 (2011). [CrossRef]
  30. S. Longhi and D. Janner, “X-shaped waves in photonic crystals,” Phys. Rev. B70, 235123 (2004). [CrossRef]
  31. O. Manela, M. Segev, and D. N. Christodoulides, “Nondiffracting beams in periodic media,” Opt. Lett.30, 2611–2613 (2005). [CrossRef] [PubMed]
  32. J. J. Miret and C. J. Zapata-Rodríguez, “Diffraction-free beams with elliptic Bessel envelope in periodic media,” J. Opt. Soc. Am. B25, 1–6 (2008). [CrossRef]
  33. J. J. Miret and C. J. Zapata-Rodríguez, “Diffraction-free propagation of subwavelength light beams in layered media,” J. Opt. Soc. Am. B27(7), 1435–1445 (2010). [CrossRef]
  34. J. J. Miret, D. Pastor, and C. J. Zapata-Rodriguez, “Subwavelength surface waves with zero diffraction,” J. Nanophoton.5, 051801 (2011). [CrossRef]
  35. A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett.35, 2082–2084 (2010). [CrossRef] [PubMed]
  36. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  37. S. M. Vukovic, Z. Jaksic, and J. Matovic, “Plasmon modes on laminated nanomembrane-based waveguides,” J. Nanophoton.4, 041770 (2010). [CrossRef]
  38. H. M. Antia, Numerical methods for scientists and engineers (Tata McGraw-Hill Publishing Company Limited, 1991).
  39. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90(19), 191109 (2007). [CrossRef]
  40. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals. Molding the flow of light (Princeton University Press, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited