OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19660–19667

Resonance modes, cavity field enhancements, and long-range collective photonic effects in periodic bowtie nanostructures

Chun-Hway Hsueh, Chih-Hong Lin, Jia-Han Li, Nahla A. Hatab, and Baohua Gu  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19660-19667 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1214 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The discovery of single-molecule sensitivity via surface-enhanced Raman scattering on resonantly excited noble metal nanoparticles has brought an increasing interest in its applications to the molecule detection and identification. Periodic gold bowtie nanostructures have recently been shown to give a large enhancement factor sufficient for single molecule detection. In this work, we simulate the plasmon resonance for periodic gold bowtie nanostructures. The difference between the dipole and the quadrupole resonances is described by examining the magnitude and phase of electric field, the bound surface charge, and the polarization. The gap size dependence of the field enhancement can be interpreted by considering cavity field enhancement. Also, additional enhancement is obtained through the long-range collective photonic effect when the bowtie array periodicity matches the resonance wavelength.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization
(260.5740) Physical optics : Resonance
(350.5030) Other areas of optics : Phase
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: August 15, 2011
Revised Manuscript: September 12, 2011
Manuscript Accepted: September 12, 2011
Published: September 22, 2011

Chun-Hway Hsueh, Chih-Hong Lin, Jia-Han Li, Nahla A. Hatab, and Baohua Gu, "Resonance modes, cavity field enhancements, and long-range collective photonic effects in periodic bowtie nanostructures," Opt. Express 19, 19660-19667 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna, towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997). [CrossRef]
  2. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004). [CrossRef]
  3. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005). [CrossRef]
  4. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008). [CrossRef] [PubMed]
  5. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008). [CrossRef] [PubMed]
  6. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  7. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997). [CrossRef]
  8. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999). [CrossRef]
  9. P. A. Mosier-Boss and S. H. Lieberman, “Surface-enhanced Raman spectroscopy substrate composed of chemically modified gold colloid particles immobilized on magnetic microparticles,” Anal. Chem. 77(4), 1031–1037 (2005). [CrossRef] [PubMed]
  10. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010). [CrossRef] [PubMed]
  11. X. Xu, K. Seal, X. Xu, I. Ivanov, C. H. Hsueh, N. A. Hatab, L. Yin, X. Zhang, Z. Cheng, B. Gu, Z. Zhang, and J. Shen, “High tunability of the surface-enhanced Raman scattering response with a metal-multiferroic composite,” Nano Lett. 11(3), 1265–1269 (2011). [CrossRef] [PubMed]
  12. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001). [CrossRef] [PubMed]
  13. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008). [CrossRef] [PubMed]
  14. http://www.lumerical.com
  15. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, FL, 1985).
  16. D. S. Kong, S. L. Yuan, Y. X. Sun, and Z. Y. Yu, “Self-assembled monolayer of o-aminothiophenol on Fe(110) surface: a combined study by electrochemistry, in situ STM, and molecular simulations,” Surf. Sci. 573(2), 272–283 (2004). [CrossRef]
  17. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  18. K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” J. Chem. Phys. 123(11), 114713 (2005). [CrossRef] [PubMed]
  19. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003). [CrossRef]
  20. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007). [CrossRef]
  21. C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009). [CrossRef] [PubMed]
  22. T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999). [CrossRef]
  23. S. A. Maier, Plasmonics Fundamentals and Applications (Springer Science + Business Media LLC, New York, 2007), pp. 163–164.
  24. S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403(1-3), 62–67 (2005). [CrossRef]
  25. K. Zhao, H. Xu, B. Gu, and Z. Zhang, “One-dimensional arrays of nanoshell dimers for single molecule spectroscopy via surface-enhanced Raman scattering,” J. Chem. Phys. 125(8), 081102 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited