OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19675–19680

Decreased oscillation threshold of a continuous-wave OPO using a semiconductor gain mirror

Mikael Siltanen, Tomi Leinonen, and Lauri Halonen  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19675-19680 (2011)
http://dx.doi.org/10.1364/OE.19.019675


View Full Text Article

Enhanced HTML    Acrobat PDF (740 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have constructed a singly resonant, continuous-wave optical parametric oscillator, where the signal beam resonates and is amplified by a semiconductor gain mirror. The gain mirror can significantly decrease the oscillation threshold compared to an identical system with conventional mirrors. The largest idler beam tuning range reached by changing the pump laser wavelength alone is from 3.6 to 4.7 µm. The single mode output power is limited but can be continuously scanned for at least 220 GHz by adding optical components in the oscillator cavity for increased stability.

© 2011 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 31, 2011
Revised Manuscript: September 13, 2011
Manuscript Accepted: September 15, 2011
Published: September 22, 2011

Citation
Mikael Siltanen, Tomi Leinonen, and Lauri Halonen, "Decreased oscillation threshold of a continuous-wave OPO using a semiconductor gain mirror," Opt. Express 19, 19675-19680 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19675


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO(3),” Opt. Lett.21(10), 713–715 (1996). [CrossRef] [PubMed]
  2. M. Siltanen, M. Vainio, and L. Halonen, “Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4 µm,” Opt. Express18(13), 14087–14092 (2010). [CrossRef] [PubMed]
  3. I. Breunig, J. Kiessling, B. Knabe, R. Sowade, and K. Buse, “Hybridly-pumped continuous-wave optical parametric oscillator,” Opt. Express16(8), 5662–5666 (2008). [CrossRef] [PubMed]
  4. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys.39(8), 3597–3639 (1968). [CrossRef]
  5. A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys.37(9), R75–R85 (2004). [CrossRef]
  6. T. Ba-Chu and M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys.46(4), 523–533 (1985). [CrossRef]
  7. F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave, singly resonant, intracavity parametric oscillator,” Opt. Lett.22(2), 75–77 (1997). [CrossRef] [PubMed]
  8. D. J. M. Stothard, J.-M. Hopkins, D. Burns, and M. H. Dunn, “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL),” Opt. Express17(13), 10648–10658 (2009). [CrossRef] [PubMed]
  9. I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett.35(21), 3616–3618 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited