OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19708–19716

Optomechanical trampoline resonators

Dustin Kleckner, Brian Pepper, Evan Jeffrey, Petro Sonin, Susanna M. Thon, and Dirk Bouwmeester  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19708-19716 (2011)
http://dx.doi.org/10.1364/OE.19.019708


View Full Text Article

Enhanced HTML    Acrobat PDF (883 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the development of optomechanical “trampoline” resonators composed of a tiny SiO2/Ta2O5 dielectric mirror on a silicon nitride micro-resonator. We observe optical finesses of up to 4 × 104 and mechanical quality factors as high as 9 × 105 in relatively massive (∼100 ng) and low frequency (10–200 kHz) devices. This results in a photon-phonon coupling efficiency considerably higher than previous Fabry-Perot-type optomechanical systems. These devices are well suited to ultra-sensitive force detection, ground-state optical cooling experiments, and demonstrations of quantum dynamics for such systems.

© 2011 OSA

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.4000) Optical devices : Microstructure fabrication
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optical Devices

History
Original Manuscript: July 6, 2011
Revised Manuscript: August 19, 2011
Manuscript Accepted: August 29, 2011
Published: September 23, 2011

Citation
Dustin Kleckner, Brian Pepper, Evan Jeffrey, Petro Sonin, Susanna M. Thon, and Dirk Bouwmeester, "Optomechanical trampoline resonators," Opt. Express 19, 19708-19716 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19708


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys.5, 509–514 (2009). [CrossRef]
  2. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462, 78–82 (2009). [CrossRef] [PubMed]
  3. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17, 3802–3817 (2009). [CrossRef] [PubMed]
  4. L. Diósi, “Models for universal reduction of macroscopic quantum fluctuations,” Phys. Rev. A40, 1165–1174 (1989). [CrossRef] [PubMed]
  5. R. Penrose, “On Gravity’s role in Quantum State Reduction,” Gen. Relativ. Gravit.28, 581–600 (1996). [CrossRef]
  6. D. Kleckner, I. Pikovski, E. Jeffrey, L. Ament, E. Eliel, J. van den Brink, and D. Bouwmeester, “Creating and verifying a quantum superposition in a micro-optomechanical system,” New J. Phys.10, 095020 (2008). [CrossRef]
  7. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett.99, 093901 (2007). [CrossRef] [PubMed]
  8. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion,” Phys. Rev. Lett.99, 093902 (2007). [CrossRef] [PubMed]
  9. J. D. Teufel, T. Donner, D. Li, J. H. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband Cooling Micromechanical Motion to the Quantum Ground State,” ArXiv e-prints (2011).
  10. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” ArXiv e-prints (2011).
  11. D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical Entanglement between a Movable Mirror and a Cavity Field,” Phys. Rev. Lett.98, 030405 (2007). [CrossRef] [PubMed]
  12. U. Akram, N. Kiesel, M. Aspelmeyer, and G. J. Milburn, “Single-photon opto-mechanics in the strong coupling regime,” New J. Phys.12, 083030 (2010). [CrossRef]
  13. S. Bose, K. Jacobs, and P. L. Knight, “Scheme to probe the decoherence of a macroscopic object,” Phys. Rev. A59, 3204–3210 (1999). [CrossRef]
  14. W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys. Rev. Lett.91, 130401 (2003). [CrossRef] [PubMed]
  15. D. Kleckner, W. Marshall, M. J. A. de Dood, K. N. Dinyari, B.-J. Pors, W. T. M. Irvine, and D. Bouwmeester, “High Finesse Opto-Mechanical Cavity with a Movable Thirty-Micron-Size Mirror,” Phys. Rev. Lett.96, 173901 (2006). [CrossRef] [PubMed]
  16. S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature460, 724 (2009). [CrossRef] [PubMed]
  17. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452, 72–75 (2008). [CrossRef] [PubMed]
  18. S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys.5, 485–488 (2009). [CrossRef]
  19. A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys.10, 095008 (2008). [CrossRef]
  20. A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A82, 021806 (2010). [CrossRef]
  21. Mirrors were deposited by Coastline Optics, LLC, located in Camarillo, CA, USA.
  22. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved Sideband Cooling of a Micromechanical Oscillator,” Nat. Phys.4, 415–419 (2008). [CrossRef]
  23. G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in “Proc. IEEE Micr. Elect.,” (2010), pp. 847–850.
  24. D. Brodoceanu, G. D. Cole, N. Kiesel, M. Aspelmeyer, and D. Bauerle, “Femtosecond laser fabrication of high reflectivity micromirrors,” Appl. Phys. Lett.97, 041104 (2010). [CrossRef]
  25. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive Cavity Optical Force on Microdisk-Coupled Nanomechanical Beam Waveguides,” Phys. Rev. Lett.103, 223901 (2009). [CrossRef]
  26. D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical cavities,” Phys. Rev. A81 (2010). [CrossRef]
  27. M. Yamamoto, “Sub-nm figure error correction of an extreme ultraviolet multilayer mirror by its surface milling,” Nucl. Instrum. Methods Phys. Res., A467–468, 1282–1285 (2001). [CrossRef]
  28. K. Kamijo, R. Uozumi, K. Moriziri, S. A. Pahlovy, and I. Miyamoto, “Two stage ion beam figuring and smoothening method for shape error correction of ULE substrates of extreme ultraviolet lithography projection optics: Evaluation of high-spatial frequency roughness,” J. Vac. Sci. Technol. B27, 2900 (2009) [CrossRef]
  29. S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys.99, 124304 (2006). [CrossRef]
  30. S. S. Verbridge, D. F. Shapiro, H. G. Craighead, and J. M. Parpia, “Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators,” Nano Lett.7, 1728–1735 (2007). [CrossRef] [PubMed]
  31. B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. B. Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92, 103125 (2008). [CrossRef]
  32. M. Roseman and P. Grutter, “Cryogenic magnetic force microscope,” Rev. Sci. Instrum.71, 3782–3787 (2000). [CrossRef]
  33. C. K. Law, “Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation,” Phys. Rev. A51, 2537–2541 (1995). [CrossRef] [PubMed]
  34. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfeld, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics4, 236–242 (2010). [CrossRef]
  35. A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Quantum measurement of phonon shot noise,” Phys. Rev. Lett.104, 213603 (2010). [CrossRef] [PubMed]
  36. H. J. Mamin and D. Rugar, “Sub-attonewton force detection at millikelvin temperatures,” Appl. Phys. Lett.79, 3358–3360 (2001). [CrossRef]
  37. C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA106, 1313–1317 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited