OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19731–19739

Humidity insensitive TOPAS polymer fiber Bragg grating sensor

Wu Yuan, Lutful Khan, David J. Webb, Kyriacos Kalli, Henrik K. Rasmussen, Alessio Stefani, and Ole Bang  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19731-19739 (2011)
http://dx.doi.org/10.1364/OE.19.019731


View Full Text Article

Enhanced HTML    Acrobat PDF (945 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first experimental demonstration of a humidity insensitive polymer optical fiber Bragg grating (FBG), as well as the first FBG recorded in a TOPAS polymer optical fiber in the important low loss 850nm spectral region. For the demonstration we have fabricated FBGs with resonance wavelength around 850 nm and 1550 nm in single-mode microstructured polymer optical fibers made of TOPAS and the conventional poly (methyl methacrylate) (PMMA). Characterization of the FBGs shows that the TOPAS FBG is more than 50 times less sensitive to humidity than the conventional PMMA FBG in both wavelength regimes. This makes the TOPAS FBG very appealing for sensing applications as it appears to solve the humidity sensitivity problem suffered by the PMMA FBG.

© 2011 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(160.5470) Materials : Polymers

ToC Category:
Sensors

History
Original Manuscript: July 19, 2011
Revised Manuscript: September 5, 2011
Manuscript Accepted: September 6, 2011
Published: September 23, 2011

Citation
Wu Yuan, Lutful Khan, David J. Webb, Kyriacos Kalli, Henrik K. Rasmussen, Alessio Stefani, and Ole Bang, "Humidity insensitive TOPAS polymer fiber Bragg grating sensor," Opt. Express 19, 19731-19739 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19731


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Dobb, K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, A. Argyros, M. C. J. Large, M. A. van Eijkelenborg, Q. Fang, and I. W. Boyd, “Grating based devices in polymer optical fibre,” Proc. SPIE618901 (2006). [CrossRef]
  2. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011). [CrossRef]
  3. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett.32(5), 460–462 (2007). [CrossRef] [PubMed]
  4. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with TOPAS microstructured polymer optical fiber: Erratum,” Opt. Lett.32(9), 1059 (2007). [CrossRef]
  5. G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett.35(6), 856–858 (2010). [CrossRef] [PubMed]
  6. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express19(8), 7790–7798 (2011). [CrossRef] [PubMed]
  7. W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J.10(7), 1192–1199 (2010). [CrossRef]
  8. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express14(9), 4135–4140 (2006). [CrossRef] [PubMed]
  9. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express13(15), 5883–5889 (2005). [CrossRef] [PubMed]
  10. A. Dupuis, N. Guo, Y. Gao, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy, “Prospective for biodegradable microstructured optical fibers,” Opt. Lett.32(2), 109–111 (2007). [CrossRef] [PubMed]
  11. B. Hadimioglu and B. T. Khuri-Yakub, “Polymer Films as Acoustic Matching Layers,” Ultrasonics Symposium, Proceedings IEEE, 3, 1337–1340 (1990).
  12. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett.11(3), 352–354 (1999). [CrossRef]
  13. A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett.23(10), 660–662 (2011). [CrossRef]
  14. C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett.46(9), 643–644 (2010). [CrossRef]
  15. N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” PhD Thesis, Lausanne, EPFL (2008).
  16. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett.30(24), 3296–3298 (2005). [CrossRef] [PubMed]
  17. I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett.46(17), 1217–1218 (2010). [CrossRef]
  18. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011). [CrossRef]
  19. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region,” Opt. Express15(4), 1794–1803 (2007). [CrossRef] [PubMed]
  20. D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Advanced Sensor Systems and Applications III, Proc. of SPIE6830, 683002 (2007).
  21. D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, and O. Bang, “E, Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Photonic Crystal FibersII, L9900 (2008).
  22. www.topas.com .
  23. G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng.40(6), 1024–1029 (2001). [CrossRef]
  24. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009). [CrossRef] [PubMed]
  25. M. C. J. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, “Microstructured polymer optical fibres,” Springer, (2008).
  26. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express9(7), 319–327 (2001). [CrossRef] [PubMed]
  27. N. A. Mortensen, “Semianalytical approach to short-wavelength dispersion and modal properties of photonic crystal fibers,” Opt. Lett.30(12), 1455–1457 (2005). [CrossRef] [PubMed]
  28. G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express15(12), 7876–7887 (2007). [CrossRef] [PubMed]
  29. L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B25(3), 310 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited