OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 19925–19934

Slim Luneburg lens for antenna applications

Angela Demetriadou and Yang Hao  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 19925-19934 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1746 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Luneburg lens is a marvellous optical lens but is extremely difficult to be applied in any practical antenna system due to its large spherical shape. In this paper, we propose a transformation that reduces the profile of the original Luneburg lens without affecting its unique properties. The new transformed slim lens is then discretized and simplified for a practical antenna application, where its properties were examined numerically. It is found that the transformed lens can be used to replace conventional antenna systems (i.e. Fabry-Perot resonant antennas) producing a high-directivity beam with low side-lobes. In addition, it provides excellent steering capabilities for wide angles, maintaining the directivity and side-lobes at high and low values respectively.

© 2011 OSA

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(080.3620) Geometric optics : Lens system design
(080.3630) Geometric optics : Lenses
(220.3620) Optical design and fabrication : Lens system design
(220.3630) Optical design and fabrication : Lenses
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials

ToC Category:
Geometric Optics

Original Manuscript: June 29, 2011
Revised Manuscript: September 1, 2011
Manuscript Accepted: September 1, 2011
Published: September 27, 2011

Angela Demetriadou and Yang Hao, "Slim Luneburg lens for antenna applications," Opt. Express 19, 19925-19934 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. V. Trentini, “Partially reflecting sheet arrays,” IRE Trans. Antennas Propag. 4, 666–671 (1956). [CrossRef]
  2. D. R. Jackson and N. G. Alexopoulos, “Gain Enhancement methods for printed circuit antennas,” IEEE Trans. Antennas Propag. 33, 976–987 (1985). [CrossRef]
  3. D. Jackson and A. Oliner, “A leaky-wave analysis of the high-gain printed antenna configuration,” IEEE Trans. Antennas Propag. 36, 905–910 (1988). [CrossRef]
  4. A. Feresidis and J. Vardaxoglou, “High gain planar antenna using optimised partially reflective surfaces,” IEE Proc. Microwaves, Antennas Propag. 148, 345–350 (2001). [CrossRef]
  5. Y. Lee, J. Yeo, R. Mittra, and W. Park, “Design of a high-directivity electromagnetic band gap resonator antenna using a frequency-selective surface superstrate,” Microwave Opt. Technol. Lett. 43, 462–467 (2004). [CrossRef]
  6. M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic-bandgap antennas,” IEEE Trans. Antennas Propag. 47, 2115–2122 (1999).
  7. C. Cheype, C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, “An electromagnetic bandgap resonator antenna,” IEEE Trans. Antennas Propag. 50, 21285–21290 (2002). [CrossRef]
  8. A. Goncharov, M. Owner-Petersen, and D. Puryayev, “Intrinsic apodization effect in a compact two-mirror system with a spherical primary mirror,” Opt. Eng. 41, 3111–3115 (2002). [CrossRef]
  9. O. Guyon, “Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging,” Astron. Astrophys. 404, 379–387 (2008). [CrossRef]
  10. R. Gardelli, M. Albani, and F. Capolino, “Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement,” IEEE Trans. Antennas Propag. 54, 1979–1990 (2006). [CrossRef]
  11. A. Weily, K. Esselle, T. Bird, and B. Sanders, “Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth,” IET Microwave Antennas Propag. 1, 198–203 (2007). [CrossRef]
  12. G. Palikaras, A. Feresidis, and J. Vardaxoglou, “Cylindrical electromagnetic bandgap structures for directive base station antennas,” IEEE Antenna Wirel. Propag. Lett. 3, 87–89 (2004). [CrossRef]
  13. H. Boutayeb, T. Denidni, K. Mahdjoubi, A. Tarot, A. Sebak, and L. Talbi, “Analysis and design of a cylindrical EBG based directive antenna,” IEEE Trans. Antennas Propag. 54, 211–219 (2006). [CrossRef]
  14. A. Feresidis, M. Maragou, G. Palikaras, and J. Vardaxoglou, “Cylindrical-conformal resonant cavity antennas using passive periodic surfaces,” in International Conference on Electromagnetics in Advanced Applications (2007), pp. 165–168.
  15. Y. Hao, A. Alomainy, and C. Parini, “Antenna-beam shaping from offset defects in UC-EBG cavities,” Microwave Opt. Tech. Lett. 43, 108–111 (2004). [CrossRef]
  16. A. Ourir, S. Burokur, and A. de Lustrac, “Phase-varying metamaterial for compact steerable directive antennas,” Electron. Lett. 43, 493–494 (2007). [CrossRef]
  17. A. Ourir, S. Burokur, and A. de Lustrac, “Electronically reconfigurable metamaterial for compact directive cavity antennas,” Electron. Lett. 43, 698–700 (2007). [CrossRef]
  18. V. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Soviet Phys. Ups. 10, 509–514 (1968). [CrossRef]
  19. J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  20. R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]
  21. J. Pendry, D. Schurig, and D. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  22. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  23. R. Luneburg, Mathematical Theory of Optics (Brown University, 1944).
  24. R. Ilinsky, “Gradient-index meniscus lens free of spherical aberration,” J. Opt. A: Pure Appl. Opt. 2, 449–451 (2000). [CrossRef]
  25. C. Argyropoulos, Y. Zhao, and Y. Hao, “A radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks,” IEEE Trans. Antennas Propag. 57, 1432–1441 (2009). [CrossRef]
  26. D. Schurig, “An aberration-free lens with zero f-number,” N. J. Phys. 10, 115034 (2008). [CrossRef]
  27. N. Kundtz and D. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited