OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 19942–19947

Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers

Feng Lu and Mikhail A. Belkin  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 19942-19947 (2011)
http://dx.doi.org/10.1364/OE.19.019942


View Full Text Article

Enhanced HTML    Acrobat PDF (1475 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.

© 2011 OSA

OCIS Codes
(170.5810) Medical optics and biotechnology : Scanning microscopy
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6430) Spectroscopy : Spectroscopy, photothermal
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Spectroscopy

History
Original Manuscript: July 29, 2011
Revised Manuscript: September 5, 2011
Manuscript Accepted: September 13, 2011
Published: September 27, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Feng Lu and Mikhail A. Belkin, "Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers," Opt. Express 19, 19942-19947 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-19942


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, New York, 2004).
  2. I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem.56(1), 429–474 (2005), and references therein. [CrossRef] [PubMed]
  3. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1987).
  4. M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol.26(21), 3534–3555 (2008). [CrossRef]
  5. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399(6732), 134–137 (1999). [CrossRef]
  6. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011). [CrossRef] [PubMed]
  7. T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc.210(3), 311–314 (2003). [CrossRef] [PubMed]
  8. M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem6(10), 2197–2203 (2005). [CrossRef] [PubMed]
  9. A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol.4(3), 153–157 (2009). [CrossRef] [PubMed]
  10. A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett.30(18), 2388–2390 (2005). [CrossRef] [PubMed]
  11. A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy108(7), 635–641 (2008). [CrossRef] [PubMed]
  12. K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology21(18), 185705 (2010). [CrossRef] [PubMed]
  13. C. Prater, K. Kjoller, and R. Shetty, “Nanoscale infrared spectroscopy,” Mater. Today13(11), 56–60 (2010). [CrossRef]
  14. We obtain sample temperature change in the range 5–50 K using the experimental parameters reported in Refs. [10,12,13] and the simulation results reported in Ref. [11].
  15. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett.27(21), 1902–1904 (2002). [CrossRef] [PubMed]
  16. H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys.148(1), 311–318 (2008). [CrossRef]
  17. G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum.65(8), 2532–2537 (1994). [CrossRef]
  18. A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys.107(12), 124519 (2010). [CrossRef]
  19. J. R. Taylor, Classical Mechanics (University Science Books, Herndon, VA, 2005).
  20. U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface‐coupled atomic force microscope cantilevers: theory and experiment,” Rev. Sci. Instrum.67(9), 3281–3293 (1996). [CrossRef]
  21. N. Bloembergen, “Pulsed laser interactions with condensed matter,” Mat. Res. Soc. Symp. Proc.51, 3 (1985). [CrossRef]
  22. J. E. Mark, ed., Physical Properties of Polymers Handbook, 2nd ed. (Springer, New York, 2007).
  23. T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics5(4), 479–491 (2008). [CrossRef]
  24. R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett.37(3), 191–193 (2001). [CrossRef]
  25. C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express17(15), 12929–12943 (2009). [CrossRef] [PubMed]
  26. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95(6), 061103 (2009). [CrossRef]
  27. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett.35(7), 910–912 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited