OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20199–20204

Three-dimensional subwavelength confinement of terahertz electromagnetic surface modes in a coupled slit structure

Jin-Kyu Yang, Chul-Sik Kee, and Joong Wook Lee  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20199-20204 (2011)
http://dx.doi.org/10.1364/OE.19.020199


View Full Text Article

Enhanced HTML    Acrobat PDF (878 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the three-dimensional subwavelength confinement of the electromagnetic waves at a coupled metallic slit structure beyond diffraction limit in terahertz region. Lateral confinement behavior, leading to the three-dimensional confinement, is caused by a strong funneling effect of the light which occurs at the intersection of slits with a sharp metal geometry. Tunability of the resonant frequency and the position of the light confinement is achieved by controlling the slit length and the position of the intersection of slits, respectively.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 28, 2011
Revised Manuscript: August 23, 2011
Manuscript Accepted: September 5, 2011
Published: September 30, 2011

Citation
Jin-Kyu Yang, Chul-Sik Kee, and Joong Wook Lee, "Three-dimensional subwavelength confinement of terahertz electromagnetic surface modes in a coupled slit structure," Opt. Express 19, 20199-20204 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20199


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  3. Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics2(10), 618–621 (2008). [CrossRef]
  4. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett.91(25), 253901 (2007). [CrossRef]
  5. C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express16(23), 18565–18575 (2008). [CrossRef] [PubMed]
  6. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  7. F. J. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005). [CrossRef]
  8. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett.86(24), 5601–5603 (2001). [CrossRef] [PubMed]
  9. F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett.89(6), 063901 (2002). [CrossRef] [PubMed]
  10. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005). [CrossRef] [PubMed]
  11. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett.99(13), 137401 (2007). [CrossRef] [PubMed]
  12. J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q. H. Park, and P. C. M. Planken, “Shape resonance omni-directional terahertz filters with near-unity transmittance,” Opt. Express14(3), 1253–1259 (2006). [CrossRef] [PubMed]
  13. J. W. Lee, M. A. Seo, D. J. Park, S. C. Jeoung, Q. H. Park, Ch. Lienau, and D. S. Kim, “Terahertz transparency at Fabry-Perot resonances of periodic slit arrays in a metal plate: experiment and theory,” Opt. Express14(26), 12637–12643 (2006). [CrossRef] [PubMed]
  14. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009). [CrossRef]
  15. A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express17(4), 2089–2094 (2009). [CrossRef] [PubMed]
  16. M. K. Seo, S. H. Kwon, H. S. Ee, and H. G. Park, “Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity,” Nano Lett.9(12), 4078–4082 (2009). [CrossRef] [PubMed]
  17. X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett.105(12), 127402 (2010). [CrossRef] [PubMed]
  18. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett.31(14), 2133–2135 (2006). [CrossRef] [PubMed]
  19. H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express18(9), 9643–9650 (2010). [CrossRef] [PubMed]
  20. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited