OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20233–20243

Far-field superfocusing with an optical fiber based surface plasmonic lens made of nanoscale concentric annular slits

Yuxiang Liu, Hua Xu, Felix Stief, Nikolai Zhitenev, and Miao Yu  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20233-20243 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2277 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present experimental demonstration of light superfocusing by using an optical fiber based surface plasmonic (SP) lens with nanoscale concentric annular slits. A far-field, sub-diffraction-limit sized focus was achieved with an optical fiber based device. The performance of SP lenses with three and four annular slits was experimentally characterized. Guidelines and suggestions on designing the SP lens are provided. As a microscale device with nanoscale features, the fiber-based SP lens can provide a solution to bridging nanophotonics and conventional optics.

© 2011 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: July 18, 2011
Revised Manuscript: August 30, 2011
Manuscript Accepted: September 6, 2011
Published: September 30, 2011

Yuxiang Liu, Hua Xu, Felix Stief, Nikolai Zhitenev, and Miao Yu, "Far-field superfocusing with an optical fiber based surface plasmonic lens made of nanoscale concentric annular slits," Opt. Express 19, 20233-20243 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009). [CrossRef]
  2. F. Duerr, Y. Meuret, and H. Thienpont, “Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation,” Appl. Opt. 49(12), 2339–2346 (2010). [CrossRef] [PubMed]
  3. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, Cambridge, 2003).
  4. V. P. Kalosha and I. Golub, “Toward the subdiffraction focusing limit of optical superresolution,” Opt. Lett. 32(24), 3540–3542 (2007). [CrossRef] [PubMed]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  6. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005). [CrossRef] [PubMed]
  7. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009). [CrossRef] [PubMed]
  8. Y. Fu, Y. Liu, X. Zhou, Z. Xu, and F. Fang, “Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits,” Opt. Express 18(4), 3438–3443 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-4-3438 . [CrossRef] [PubMed]
  9. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009). [CrossRef] [PubMed]
  10. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010). [CrossRef] [PubMed]
  11. E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010). [CrossRef] [PubMed]
  12. A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Surface plasmon polaritons on metallic surfaces,” Opt. Express 15(1), 183–197 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-1-183 . [CrossRef] [PubMed]
  13. Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79(11), 1587 (2001). [CrossRef]
  14. A. G. Curto, A. Manjavacas, and F. J. García de Abajo, “Near-field focusing with optical phase antennas,” Opt. Express 17(20), 17801–17811 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-20-17801 . [CrossRef] [PubMed]
  15. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-6815 . [CrossRef] [PubMed]
  16. E. D. Palik, Handbook of optical constants of solid (Academic Press, San Diego, 1998).
  17. P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009). [CrossRef]
  18. L. Cai, J. Zhang, W. Bai, Q. Wang, X. Wei, and G. Song, “Generation of compact radially polarized beam at 850 nm in vertical-cavity surface-emitting laser via plasmonic modulation,” Appl. Phys. Lett. 97(20), 201101 (2010). [CrossRef]
  19. H. Ko, H. C. Kim, and M. Cheng, “Light focusing at metallic annular slit structure coated with dielectric layers,” Appl. Opt. 49(6), 950–954 (2010). [CrossRef] [PubMed]
  20. Y. Yu and H. Zappe, “Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design,” Opt. Express 19(10), 9434–9444 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-10-9434 . [CrossRef] [PubMed]
  21. P. Ruffieux, T. Scharf, H. P. Herzig, R. Völkel, and K. J. Weible, “On the chromatic aberration of microlenses,” Opt. Express 14(11), 4687–4694 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-11-4687 . [CrossRef] [PubMed]
  22. S. Nesson, M. Yu, X. M. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt. 13(4), 044040 (2008). [CrossRef] [PubMed]
  23. H. Bae, X. M. Zhang, H. Liu, and M. Yu, “Miniature surface-mountable Fabry-Perot pressure sensor constructed with a 45 ° angled fiber,” Opt. Lett. 35(10), 1701–1703 (2010). [CrossRef] [PubMed]
  24. Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007). [CrossRef]
  25. F. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010). [CrossRef]
  26. H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3), 036608 (2003). [CrossRef] [PubMed]
  27. Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79(11), 1587–1589 (2001). [CrossRef]
  28. F. Wang, M. Xiao, K. Sun, and Q. H. Wei, “Generation of radially and azimuthally polarized light by optical transmission through concentric circular nanoslits in Ag films,” Opt. Express 18(1), 63–71 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-1-63 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited