OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20493–20505

Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures

Jiajie Xu, Pavel Kvasnička, Matthew Idso, Roger W. Jordan, Heng Gong, Jiří Homola, and Qiuming Yu  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20493-20505 (2011)
http://dx.doi.org/10.1364/OE.19.020493


View Full Text Article

Enhanced HTML    Acrobat PDF (2123 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The local electric field distribution and the effect of surface-enhanced Raman spectroscopy (SERS) were investigated on the quasi-3D (Q3D) plasmonic nanostructures formed by gold nanohole and nanodisc array layers physically separated by a dielectric medium. The local electric fields at the top gold nanoholes and bottom gold nanodiscs as a function of the dielectric medium, substrate, and depth of Q3D plasmonic nanostructures upon the irradiation of a 785 nm laser were calculated using the three-dimensional finite-difference time-domain (3D-FDTD) method. The intensity of the maximum local electric fields was shown to oscillate with the depth and the stronger local electric fields occurring at the top or bottom gold layer strongly depend on the dielectric medium, substrate, and depth of the nanostructure. This phenomenon was determined to be related to the Fabry-Pérot interference effect and the interaction of localized surface plasmons (LSPs). The enhancement factors (EFs) of SERS obtained from the 3D-FDTD simulations were compared to those calculated from the SERS experiments conducted on the Q3D plasmonic nanostructures fabricated on silicon and ITO coated glass substrates with different depths. The same trend was obtained from both methods. The capabilities of tuning not only the intensity but also the location of the maximum local electric fields by varying the depth, dielectric medium, and substrate make Q3D plasmonic nanostructures well suited for highly sensitive and reproducible SERS detection and analysis.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 26, 2011
Revised Manuscript: August 19, 2011
Manuscript Accepted: August 22, 2011
Published: October 3, 2011

Citation
Jiajie Xu, Pavel Kvasnička, Matthew Idso, Roger W. Jordan, Heng Gong, Jiří Homola, and Qiuming Yu, "Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures," Opt. Express 19, 20493-20505 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20493


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17143–17148 (2006). [CrossRef] [PubMed]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010). [CrossRef]
  4. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007). [CrossRef] [PubMed]
  5. J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.)22(10), 1102–1110 (2010). [CrossRef] [PubMed]
  6. A. Artar, A. A. Yanik, and H. Altug, “Fabry-pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett.95(5), 051105 (2009). [CrossRef]
  7. Q. M. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett.8(7), 1923–1928 (2008). [CrossRef] [PubMed]
  8. J. J. Xu, L. Zhang, H. Gong, J. Homola, and Q. M. Yu, “Tailoring Plasmonic Nanostructures for Optimal SERS Sensing of Small Molecules and Large Microorganisms,” Small7(3), 371–376 (2011). [CrossRef] [PubMed]
  9. J. J. Xu, P. Guan, P. Kvasnička, H. Gong, J. Homola, and Q. M. Yu, “Light Transmission and Surface-Enhanced Raman Scattering of Quasi-3D Plasmonic Nanostructure Arrays with Deep and Shallow Fabry-Pérot Nanocavities,” J. Phys. Chem. C115, 10996–11002 (2011).
  10. Q. M. Yu, S. Braswell, B. Christin, J. J. Xu, P. M. Wallace, H. Gong, and D. Kaminsky, “Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays,” Nanotechnology21(35), 355301 (2010). [CrossRef] [PubMed]
  11. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008). [CrossRef] [PubMed]
  12. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008). [CrossRef] [PubMed]
  13. K. S. Lee and M. A. El-Sayed, “Dependence of the Enhanced Optical Scattering Efficiency Relative to that of Absorption for Gold Metal Nanorods on Aspect Ratio, Size, End-Cap Shape, and Medium Refractive Index,” J. Phys. Chem. B109(43), 20331–20338 (2005). [CrossRef] [PubMed]
  14. A. Baptiste, A. Bulou, J. F. Bardeau, J. Nouet, A. Gibaud, K. Wen, S. Hoeppener, R. Maoz, and J. Sagiv, “Substrate-induced modulation of the Raman scattering signals from self-assembled organic nanometric films,” Langmuir20(15), 6232–6237 (2004). [CrossRef] [PubMed]
  15. Lumerical FDTD Solution, FDTD Solutions 6.5, http://www.lumerical.com/fdtd.php .
  16. W. M. Haynes and D. R. Lide, Handbook of chemistry and physics (CRC Press, Boca Raton, 2003).
  17. K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface,” J. Am. Chem. Soc.121(34), 7925–7930 (1999). [CrossRef]
  18. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express17(5), 3741–3753 (2009). [CrossRef] [PubMed]
  19. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  20. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997). [CrossRef]
  21. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev.27(4), 241–250 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited