OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20622–20627

Position clamping of optically trapped microscopic non-spherical probes

D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20622-20627 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (811 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the degree of control that can be exercised over an optically trapped microscopic non-spherical force probe. By position clamping translational and rotational modes in different ways, we are able to dramatically improve the position resolution of our probe with no reduction in sensitivity. We also demonstrate control over rotational-translational coupling, and exhibit a mechanism whereby the average centre of rotation of the probe can be displaced away from its centre.

© 2011 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: August 15, 2011
Revised Manuscript: September 13, 2011
Manuscript Accepted: September 13, 2011
Published: October 3, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, "Position clamping of optically trapped microscopic non-spherical probes," Opt. Express 19, 20622-20627 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  2. D. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003). [CrossRef] [PubMed]
  3. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett.29(19), 2270–2272 (2004). [CrossRef] [PubMed]
  4. S. H. Simpson and S. Hanna, “Thermal motion of a holographically trapped SPM-like probe,” Nanotechnology20(39), 395710 (2009). [CrossRef] [PubMed]
  5. O. M. Marago, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton force sensing with optically trapped nanotubes,” Nano Lett.8(10), 3211–3216 (2008). [CrossRef] [PubMed]
  6. F. C. Cheong and D. G. Grier, “Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy,” Opt. Express18(7), 6555–6562 (2010). [CrossRef]
  7. D. B. Phillips, D. M. Carberry, S. H. Simpson, H. Schaefer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking,” J. Opt.13(4, Sp. Iss. SI), 044023 (2011). [CrossRef]
  8. D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schafer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology21(17) 175501 (2010). [CrossRef] [PubMed]
  9. T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11, 093021 (2009). [CrossRef]
  10. K. D. Wulff, D. G. Cole, and R. L. Clark, “Servo control of an optical trap,” Appl. Opt.46(22), 4923–4931 (2007). [CrossRef] [PubMed]
  11. H. Ojala, A. Korsback, A. E. Wallin, and E. Haeggstrom, “Optical position clamping with predictive control,” Appl. Phys. Lett.95(18), 181104 (2009). [CrossRef]
  12. Y. Huang, Z. Zhang, and C.-H. Menq, “Minimum-variance Brownian motion control of an optically trapped probe,” Appl. Opt.48(30), 5871–5880 (2009). [CrossRef] [PubMed]
  13. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17(25), 22718–22725 (2009). [CrossRef]
  14. G. Gibson, D. M. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. Robert, M. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt. A10(4), 044009 (2008).
  15. D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology22(28), 285503 (2011). [CrossRef] [PubMed]
  16. R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: control of trap shape,” Opt. Express18(11), 11,785–11,790 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited