OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20691–20703

Non-spectroscopic refractometric nanosensor based on a tilted slit-groove plasmonic interferometer

Xiaowei Li, Qiaofeng Tan, Benfeng Bai, and Guofan Jin  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20691-20703 (2011)
http://dx.doi.org/10.1364/OE.19.020691


View Full Text Article

Enhanced HTML    Acrobat PDF (2505 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmonic nanosensors are promising for chip-based refractometric detections, most of which are based on spectroscopic monitoring of surface plasmon resonance. Here, we propose a simple non-spectroscopic refractometric sensing scheme based on a plasmonic interferometer integrating a metallic groove array and a tilted nanoslit. Owing to the interference of the directly transmitted light from the nanoslit and that mediated by the surface plasmon polaritons launched from the groove array, high-contrast intensity fringe can be detected under the illumination of monochromatic light. By inspecting the spatial shift of the interference fringe, the refractive index change of the cover analyte can be derived. In our experiment, the interferometer shows a sensitivity up to 5 × 103 μm/RIU and a figure of merit as high as 250. This sensor shows great potential for low-cost, portable, and high-throughput sensing applications due to its simple, robust, and non-spectroscopic scheme.

© 2011 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(240.6680) Optics at surfaces : Surface plasmons
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: August 5, 2011
Revised Manuscript: September 2, 2011
Manuscript Accepted: September 22, 2011
Published: October 4, 2011

Citation
Xiaowei Li, Qiaofeng Tan, Benfeng Bai, and Guofan Jin, "Non-spectroscopic refractometric nanosensor based on a tilted slit-groove plasmonic interferometer," Opt. Express 19, 20691-20703 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20691


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008). [CrossRef] [PubMed]
  3. P. P. Markowicz, W. C. Law, A. Baev, P. N. Prasad, S. Patskovsky, and A. Kabashin, “Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing,” Opt. Express15(4), 1745–1754 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1745 . [CrossRef] [PubMed]
  4. X. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett.89(26), 261108 (2006). [CrossRef]
  5. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008). [CrossRef] [PubMed]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  7. Q. Gan, Y. Gao, and F. J. Bartoli, “Vertical plasmonic Mach-Zehnder interferometer for sensitive optical sensing,” Opt. Express17(23), 20747–20755 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-23-20747 . [CrossRef] [PubMed]
  8. X. Wu, J. Zhang, J. Chen, C. Zhao, and Q. Gong, “Refractive index sensor based on surface-plasmon interference,” Opt. Lett.34(3), 392–394 (2009). [CrossRef] [PubMed]
  9. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  10. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010). [CrossRef] [PubMed]
  11. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101(8), 087403 (2008). [CrossRef] [PubMed]
  12. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett.31(10), 1528–1530 (2006). [CrossRef] [PubMed]
  13. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology14(8), 907–912 (2003). [CrossRef]
  14. A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt.42(28), 5649–5660 (2003). [CrossRef] [PubMed]
  15. M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem.329(2), 190–198 (2004). [CrossRef] [PubMed]
  16. Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, and M. J. Sailor, “Polymer replicas of photonic porous silicon for sensing and drug delivery applications,” Science299(5615), 2045–2047 (2003). [CrossRef] [PubMed]
  17. D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science317(5845), 1732–1736 (2007). [CrossRef] [PubMed]
  18. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys.2(4), 262–267 (2006). [CrossRef]
  19. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys.2(8), 551–556 (2006). [CrossRef]
  20. V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett.32(10), 1235–1237 (2007). [CrossRef] [PubMed]
  21. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1(7), 402–406 (2007). [CrossRef]
  22. J.-C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron.24(8), 2334–2338 (2009). [CrossRef] [PubMed]
  23. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett.6(9), 2060–2065 (2006). [CrossRef] [PubMed]
  24. Z. Wang, P. J. Bryanston-Cross, and D. J. Whitehouse, “Phase difference determination by fringe pattern matching,” Opt. Laser Technol.28(6), 417–422 (1996). [CrossRef]
  25. M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009). [CrossRef] [PubMed]
  26. J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol.2(9), 549–554 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited