OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20704–20721

Retrieving cloud geometrical extents from MIPAS/ENVISAT measurements with a 2-D tomographic approach

E. Castelli, B.M. Dinelli, M. Carlotti, E. Arnone, E. Papandrea, and M. Ridolfi  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20704-20721 (2011)
http://dx.doi.org/10.1364/OE.19.020704


View Full Text Article

Enhanced HTML    Acrobat PDF (1931 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Clouds represent a critical factor in regulating the Earth's atmosphere and its energy balance. Satellite instruments can measure the energy balance and global atmospheric properties only through an accurate knowledge of the vertical profile of cloudiness, which is as yet one of the key shortages in atmospheric science. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on-board the ENVISAT satellite, designed to infer the amount of atmospheric trace-gases, demonstrated also sensitivity to the radiation emitted from clouds. In order to model the effect of the geometrical extent of a cloud on MIPAS measurements, we developed a retrieval model capable to simulate cloud effects on broad spectral intervals accounting for the two-dimensional (2-D) variability of the atmosphere in the satellite orbit plane. The 2-D analysis revealed a sensitivity of MIPAS spectra to both the vertical and horizontal extents and the position of clouds along the instrument line of sight. One-dimensional models were found to underestimate Cloud Top Height (CTH) by approximating clouds as an infinite horizontal layer with a finite vertical extents. With the 2-D approach, we showed it is possible, for optically thin Polar Stratospheric Clouds (PSCs), to retrieve both CTH and horizontal dimension by analyzing simultaneously all the limb observations that come across the cloud with their field of view. For a selected case study we found a very good agreement for both PSC CTH and horizontal extents retrieved from MIPAS measurements and those retrieved from coincident CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarisation) measurements.

© 2011 OSA

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1615) Atmospheric and oceanic optics : Clouds
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: April 5, 2011
Revised Manuscript: June 28, 2011
Manuscript Accepted: July 6, 2011
Published: October 4, 2011

Citation
E. Castelli, B.M. Dinelli, M. Carlotti, E. Arnone, E. Papandrea, and M. Ridolfi, "Retrieving cloud geometrical extents from MIPAS/ENVISAT measurements with a 2-D tomographic approach," Opt. Express 19, 20704-20721 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20704


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. K. Gupta, W. L. Darnell, and A. C. Wilber, “A parameterization for longwave surface radiation from satellite data: Recent improvements,” J. Appl. Meteorol.31(12), 1361–1367 (1992). [CrossRef]
  2. A. K. Heidinger and M. J. Pavolonis, “Global daytime distribution of overlapping cirrus cloud from NOAA’s advanced very high resolution radiometer,” J. Clim.18(22), 4772–4784 (2005). [CrossRef]
  3. M. J. Pavolonis and A. K. Heidinger, “Daytime cloud overlap detection from AVHRR and VIIRS,” J. Appl. Meteorol.43(5), 762–778 (2004). [CrossRef]
  4. D. Offermann, K. U. Grossmann, P. Barthol, P. Knieling, M. Riese, and R. Trant, “The cryogenic infrared spectrometers and telescopes for the atmosphere (CRISTA) experiment and middle atmosphere variability,” J. Geophys. Res.104(D13), 16311–16325 (1999). [CrossRef]
  5. R. Spang, M. Riese, G. Eidmann, D. Offermann, L. Pfister, and P. H. Wang, “CRISTA observations of cirrus clouds around the tropopause,” J. Geophys. Res.107(D23), 8174 (2002). [CrossRef]
  6. P. H. Wang, P. Minnis, M. P. McCormick, G. S. Kent, and K. S. Skeens, “A 6-year climatology of cloud occurrence frequency from SAGE II observations (1985–1990),” J. Geophys. Res.101, 29407–29430 (1996).
  7. S. T. Massie, P. L. Bailey, J. C. Gille, E. C. Lee, J. L. Mergenthaler, A. E. Roche, J. B. Kumer, E. F. Fishbein, J. W. Waters, and W. A. Lahoz, “Spectral signatures of polar stratospheric clouds and sulfate aerosol,” J. Atmos. Sci.51(20), 3027–3044 (1994). [CrossRef]
  8. H. Fischer, M. Birk, C. Blom, B. Carli, M. Carlotti, T. von Clarmann, L. Delbouille, A. Dudhia, D. Ehhalt, M. Endemann, J. M. Flaud, R. Gessner, A. Kleinert, R. Koopman, J. Langen, M. Lopez-Puertas, P. Mosner, H. Nett, H. Oelhaf, G. Perron, J. Remedios, M. Ridolfi, G. Stiller, and R. Zander, “MIPAS: an instrument for atmospheric and climate research,” Atmos. Chem. Phys.8(8), 2151–2188 (2008). [CrossRef]
  9. R. Spang, J. J. Remedios, and M. P. Barkley, “Colour indices for the detection and differentiation of cloud types in infrared limb emission spectra,” Adv. Space Res.33(7), 1041–1047 (2004). [CrossRef]
  10. M. Höpfner, H. Oelhaf, G. Wetzel, F. Friedl-Vallon, A. Kleinert, A. Lengel, G. Maucher, H. Nordmeyer, N. Glatthor, G. Stiller, T. von Clarmann, H. Fischer, C. Kröger, and T. Deshler, “Evidence of scattering of tropospheric radiation by PSCs in mid-IR limb emission spectra: MIPAS-B observations and KOPRA simulations,” Geophys. Res. Lett.29(8), 1278 (2002). [CrossRef]
  11. M. Höpfner, “Study on the impact of polar stratospheric clouds on high resolution mid-IR limb emission spectra,” J. Quant. Spectrosc. Radiat. Transf.83(1), 93–107 (2004). [CrossRef]
  12. R. Spang, J. J. Remedios, L. J. Kramer, L. R. Poole, M. D. Fromm, M. Müller, G. Baumgarten, and P. Konopka, “Polar stratospheric cloud observations by MIPAS on ENVISAT: detection method, validation and analysis of the northern hemisphere winter 2002/2003,” Atmos. Chem. Phys.5(3), 679–692 (2005). [CrossRef]
  13. M. Höpfner, M. C. Pitts, and L. R. Poole, “Comparison between CALIPSO and MIPAS observations of polar stratospheric clouds,” J. Geophys. Res.114, D00H05 (2009). [CrossRef]
  14. T. Steck, M. Höpfner, T. von Clarmann, and U. Grabowski, “Tomographic retrieval of atmospheric parameters from infrared limb emission observations,” Appl. Opt.44(16), 3291–3301 (2005). [CrossRef] [PubMed]
  15. N. J. Livesey, W. Van Snyder, W. G. Read, and P. A. Wagner, “Retrieval algorithms for the EOS microwave limb sounder (MLS),” IEEE Trans. Geosci. Rem. Sens.44(5), 1144–1155 (2006). [CrossRef]
  16. J. Puķīte, S. Kühl, T. Deutschmann, U. Platt, and T. Wagner, “Accounting for the effect of horizontal gradients in limb measurements of scattered sunlight,” Atmos. Chem. Phys.8(12), 3045–3060 (2008). [CrossRef]
  17. J. Ungermann, L. Hoffmann, P. Preusse, M. Kaufmann, and M. Riese, “Tomographic retrieval approach for mesoscale gravity wave observations by the PREMIER infrared limb-sounder,” Atmos. Meas. Tech. Disc.3(2), 339–354 (2010). [CrossRef]
  18. M. Carlotti, B. M. Dinelli, P. Raspollini, and M. Ridolfi, “Geo-fit approach to the analysis of limb-scanning satellite measurements,” Appl. Opt.40(12), 1872–1885 (2001). [CrossRef] [PubMed]
  19. M. Kiefer, E. Arnone, A. Dudhia, M. Carlotti, E. Castelli, T. von Clarmann, B. M. Dinelli, A. Kleinert, A. Linden, M. Milz, E. Papandrea, and G. Stiller, “Impact of temperature field inhomogeneities on the retrieval of atmospheric species from MIPAS IR limb emission spectra,” Atmos. Meas. Tech. Disc.3(5), 1487–1507 (2010). [CrossRef]
  20. E. Castelli, B. M. Dinelli, M. Carlotti, M. Ridolfi, E. Arnone, and E. Papandrea, “Broadband_clouds: a tool for 2D representation of clouds in MIPAS/ENVISAT scenario, description and applications,” in Proceedings of ESA Atmospheric Science Conference 2009, H. Lacoste, ed. (ESA SP-676, Noordwijk, The Netherlands, 2009).
  21. J. T. Houghton, The Physics of Atmospheres, 2nd ed. (Cambridge University 1986).
  22. G. Brizzi, “Development of an analysis system finalized to the identification of unpredicted spectral features in MIPAS-ENVISAT measurements and to the monitoring of the atmospheric composition,” PhD Thesis for Dipartimento di Chimica Fisica ed Inorganica – Università di Bologna, Bologna, Italy, (2006).
  23. J.-M. Flaud, G. Brizzi, M. Carlotti, A. Perrin, and M. Ridolfi, “MIPAS database: validation of HNO3 line parameters using MIPAS satellite measurements,” Atmos. Chem. Phys.6(12), 5037–5048 (2006). [CrossRef]
  24. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).
  25. M. Höpfner and C. Emde, “Comparison of single and multiple scattering approaches for the simulation of limb–emission observations in the mid–IR,” J. Quant. Spectrosc. Radiat. Transf.91(3), 275–285 (2005). [CrossRef]
  26. G. B. L. Ewen, R. G. Grainger, A. Lambert, and A. J. Baran, “Infrared radiative transfer modelling in a 3D scattering cloudy atmosphere: Application to limb sounding measurements of cirrus,” J. Quant. Spectrosc. Radiat. Transf.96(1), 45–74 (2005). [CrossRef]
  27. J. Mendrok, F. Schreier, and M. Höpfner, “Estimating cirrus cloud properties from MIPAS data,” Geophys. Res. Lett.34(8), L08807 (2007). [CrossRef]
  28. J. A. Hurley, A. Dudhia, and D. Grainger, “Retrieval of macrophysical cloud parameters from MIPAS: algorithm description,” Atmos. Meas. Tech. Disc.4(4), 683–704 (2011). [CrossRef]
  29. O. B. Toon, M. A. Tolbert, B. G. Koehler, A. M. Middlebrook, and J. Jordan, “Infrared optical constants of H 2 O ice, amorphous nitric acid solutions, and nitric acid hydrates,” J. Geophys. Res.99(D12), 25631–25654 (1994). [CrossRef]
  30. R. Spang and J. J. Remedios, “Observations of a distinctive infrared spectral feature in the atmospheric spectra of polar stratospheric clouds measured by the CRISTA instrument,” Geophys. Res. Lett.30(16), 1875 (2003). [CrossRef]
  31. B. M. Dinelli, E. Arnone, G. Brizzi, M. Carlotti, E. Castelli, L. Magnani, E. Papandrea, M. Prevedelli, and M. Ridolfi, “The MIPAS2D database of MIPAS/ENVISAT measurements retrieved with a multi-target 2-dimensional tomographic approach,” Atmos. Meas. Tech. Disc.3(2), 355–374 (2010). [CrossRef]
  32. M. C. Pitts, L. W. Thomason, L. R. Poole, and D. M. Winker, “Characterization of polar stratospheric clouds with space-borne Lidar: CALIPSO and the 2006 Antarctic season,” Atmos. Chem. Phys.7(19), 5207–5228 (2007). [CrossRef]
  33. P. Raspollini, C. Belotti, A. Burgess, B. Carli, M. Carlotti, S. Ceccherini, B. M. Dinelli, A. Dudhia, J.-M. Flaud, B. Funke, M. Höpfner, M. Lopez-Puertas, V. Payne, C. Piccolo, J. J. Remedios, M. Ridolfi, and R. Spang, “MIPAS level 2 operational analysis,” Atmos. Chem. Phys.6(12), 5605–5630 (2006). [CrossRef]
  34. J. J. Remedios and R. Spang, “Detection of cloud effects in MIPAS spectral data and implications for the MIPAS operational processor,” in Proceedings of the ENVISAT calibration review, Huguette Sawaya-Lacoste ed., (ESA SP-520, Noordwijk, The Netherlands, 2002).
  35. M. Höpfner, B. P. Luo, P. Massoli, F. Cairo, R. Spang, M. Snels, G. Di Donfrancesco, G. Stiller, T. von Clarmann, H. Fischer, and U. Biermann, “Spectroscopic evidence for NAT, STS, and ice in MIPAS infrared limb emission measurements of polar stratospheric clouds,” Atmos. Chem. Phys.6(5), 1201–1219 (2006). [CrossRef]
  36. M. C. Pitts, L. R. Poole, and L. W. Thomason, “CALIPSO polar stratospheric cloud observations: second-generation detection algorithm and composition discrimination,” Atmos. Chem. Phys.9(19), 7577–7589 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited