OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20736–20742

FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers

Jing Li and Xiaoping Wu  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20736-20742 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1022 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.

© 2011 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: June 21, 2011
Revised Manuscript: August 21, 2011
Manuscript Accepted: September 16, 2011
Published: October 4, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Jing Li and Xiaoping Wu, "FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers," Opt. Express 19, 20736-20742 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  2. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000). [CrossRef]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  4. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006). [CrossRef] [PubMed]
  5. T. Yu, F. C. Cheong, and C. H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004). [CrossRef]
  6. R. Agarwal, K. Ladavac, Y. Roichman, G. H. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13(22), 8906–8912 (2005). [CrossRef] [PubMed]
  7. P. B. Bareil and Y. L. Sheng, “Angular and position stability of a nanorod trapped in an optical tweezers,” Opt. Express 18(25), 26388–26398 (2010). [CrossRef] [PubMed]
  8. F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008). [CrossRef] [PubMed]
  9. D. C. Benito, S. H. Simpson, and S. Hanna, “FDTD simulations of forces on particles during holographic assembly,” Opt. Express 16(5), 2942–2957 (2008). [CrossRef] [PubMed]
  10. J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66(7), 2800–2802 (1989). [CrossRef]
  11. G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial-wave representations of laser beams for use in light-scattering calculations,” Appl. Opt. 34(12), 2133–2143 (1995). [CrossRef] [PubMed]
  12. S. H. Simpson and S. Hanna, “Numerical calculation of interparticle forces arising in association with holographic assembly,” J. Opt. Soc. Am. A 23(6), 1419–1431 (2006). [CrossRef] [PubMed]
  13. G. J. Hu, J. Li, Q. Long, T. Tao, G. X. Zhang, and X. P. Wu, “FDTD numerical simulation of the trapping force of microsphere in single optical tweezers,” Acta Phys. Sin. 60, 30301 (2011).
  14. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22(5), 984–991 (2005). [CrossRef] [PubMed]
  15. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited