OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20743–20750

Three-dimensional Fluorescence Lifetime Imaging with a Single Plane Illumination Microscope provides an improved Signal to Noise Ratio

Klaus Greger, Manuel J. Neetz, Emmanuel G. Reynaud, and Ernst H.K. Stelzer  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20743-20750 (2011)
http://dx.doi.org/10.1364/OE.19.020743


View Full Text Article

Enhanced HTML    Acrobat PDF (894 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We designed a widefield frequency domain Fluorescence Lifetime Imaging Microscopy (FLIM)setup, which is based on a Single Plane Illumination Microscope (SPIM). A SPIM provides an inherent optical sectioning capability and reduces photobleaching compared to conventional widefield and confocal fluorescence microscopes. The lifetime precision of the FLIM was characterized with Rhodamine 6G solutions of different quencher concentrations [KI]. We demonstrate the high spatial resolution of the SPIM-FLIM combination in the intensity domain as well as in the lifetime domain with latex bead samples and multiple recordings of three-dimensional live Madine-Darby Canine Kidney (MDCK) cysts. We estimate that the bleaching rate after 600 images have been recorded is below 5%.

© 2011 OSA

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 6, 2011
Revised Manuscript: September 2, 2011
Manuscript Accepted: September 5, 2011
Published: October 4, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Klaus Greger, Manuel J. Neetz, Emmanuel G. Reynaud, and Ernst H.K. Stelzer, "Three-dimensional Fluorescence Lifetime Imaging with a Single Plane Illumination Microscope provides an improved Signal to Noise Ratio," Opt. Express 19, 20743-20750 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20743


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Periasamy, P. Wodnicki, X. F. Wang, S. Kwon, G. W. Gordon, and B. Herman, “Time-resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye laser system,” Rev. Sci. Instrum.67(10), 3722–3731 (1996). [CrossRef]
  2. T. W. J. Gadella, T. M. Jovin, and R. M. Clegg, “Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale,” Biophys. Chem.48(2), 221–239 (1993). [CrossRef]
  3. H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol.16(1), 19–27 (2005). [CrossRef] [PubMed]
  4. S. E. D. Webb, Y. Gu, S. Lévêque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juškaitis, L. O. D. Sucharov, T. Wilson, and M. J. Lever, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum.73(4), 1898–1907 (2002). [CrossRef]
  5. M. J. Booth and T. Wilson, “Low-cost, frequency-domain, fluorescence lifetime confocal microscopy,” J. Microsc.214(1), 36–42 (2004). [CrossRef] [PubMed]
  6. R. R. Duncan, A. Bergmann, M. A. Cousin, D. K. Apps, and M. J. Shipston, “Multi-dimensional time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to detect FRET in cells,” J. Microsc.215(1), 1–12 (2004). [CrossRef] [PubMed]
  7. D. M. Grant, J. McGinty, E. J. McGhee, T. D. Bunney, D. M. Owen, C. B. Talbot, W. Zhang, S. Kumar, I. Munro, P. M. Lanigan, G. T. Kennedy, C. Dunsby, A. I. Magee, P. Courtney, M. Katan, M. A. Neil, and P. M. French, “High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events,” Opt. Express15(24), 15656–15673 (2007). [CrossRef] [PubMed]
  8. A. Deniset-Besseau, S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, “Three-dimensional time-resolved fluorescence imaging by multifocal multiphoton microscopy for a photosensitizer study in living cells,” Appl. Opt.46(33), 8045–8051 (2007). [CrossRef] [PubMed]
  9. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  10. K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum.78(2), 023705 (2007). [CrossRef] [PubMed]
  11. A. Elder, S. Schlachter, and C. F. Kaminski, “Theoretical investigation of the photon efficiency in frequency-domain fluorescence lifetime imaging microscopy,” J. Opt. Soc. Am. A25(2), 452–462 (2008). [CrossRef] [PubMed]
  12. A. D. Elder, J. H. Frank, J. Swartling, X. Dai, and C. F. Kaminski, “Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources,” J. Microsc.224(2), 166–180 (2006). [CrossRef] [PubMed]
  13. Q. S. Hanley, V. Subramaniam, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression,” Cytometry43(4), 248–260 (2001). [CrossRef] [PubMed]
  14. P. J. Keller, F. Pampaloni, and E. H. K. Stelzer, “Three-dimensional preparation and imaging reveal intrinsic microtubule properties,” Nat. Methods4(10), 843–846 (2007). [CrossRef] [PubMed]
  15. E. G. Reynaud, U. Krzic, K. Greger, and E. H. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J2(5), 266–275 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited