OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20751–20760

A compact light concentrator by the use of plasmonic faced folded nano-rods

Taerin Chung, Yongjun Lim, Il-Min Lee, Seoung-Yeol Lee, Jinyoung Choi, Sookyoung Roh, Kyoung-Youm Kim, and Byoungho Lee  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20751-20760 (2011)
http://dx.doi.org/10.1364/OE.19.020751


View Full Text Article

Enhanced HTML    Acrobat PDF (1564 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a compact nano-metallic structure for enhancing and concentrating far-field transmission: a faced folded nano-rod (FFR) unit, composed of two folded metallic nano-rods placed facing each other in an aperture. By analyzing local charge, field, and current distributions in the FFR unit using three-dimensional finite difference time domain (FDTD) calculation results, we show that although charge and field configurations become somewhat different depending on the polarization states of the illumination, similar current flows are formed in the FFR unit, which entail similar far-field radiation patterns regardless of the polarization states, making the FFR unit a quasi-polarization-insensitive field concentrator. We demonstrate this functionality of the FFR unit experimentally using the holographic microscopy which provides us a three-dimensional map of the complex wavefronts of optical fields emanating from the FFR unit.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 1, 2011
Revised Manuscript: August 22, 2011
Manuscript Accepted: September 11, 2011
Published: October 4, 2011

Citation
Taerin Chung, Yongjun Lim, Il-Min Lee, Seoung-Yeol Lee, Jinyoung Choi, Sookyoung Roh, Kyoung-Youm Kim, and Byoungho Lee, "A compact light concentrator by the use of plasmonic faced folded nano-rods," Opt. Express 19, 20751-20760 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20751


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003). [CrossRef] [PubMed]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, 1988).
  3. B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuat.4299–304 (1983). [CrossRef]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008). [CrossRef] [PubMed]
  5. S. Rho, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors11, 1565–1588 (2011). [CrossRef]
  6. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006). [CrossRef] [PubMed]
  8. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE96, 1810–1835 (2008). [CrossRef]
  9. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express17, 14001–14014 (2009). [CrossRef] [PubMed]
  10. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  11. I. Tsutomu, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44, L364–L366 (2005). [CrossRef]
  12. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3, 601–605 (2004). [CrossRef] [PubMed]
  13. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009). [CrossRef] [PubMed]
  14. T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature391, 667–669 (1998). [CrossRef]
  15. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002). [CrossRef] [PubMed]
  16. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett.70, 1354–1356 (1997). [CrossRef]
  17. J.-J. Greffet, “Nanoantennas for light emission,” Science308, 1561–1563 (2005). [CrossRef] [PubMed]
  18. Q.-H. Park, “Optical antennas and plasmonics,” Contemp. Phys.50, 407–423 (2009). [CrossRef]
  19. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009). [CrossRef]
  20. S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C111, 116–123 (2007) [CrossRef]
  21. K. Sendur and E. Baran, “Near-field optical power transmission of dipole nano-antennas,” Appl. Phys. B96, 325–335 (2009). [CrossRef]
  22. T. Pakizeh and M. Kall, “Unidirectional ultracompact optical nanoantennas,” Nano Lett.9, 2343–2349 (2009). [CrossRef] [PubMed]
  23. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics4, 312–315 (2010). [CrossRef]
  24. T. Chung, J. Choi, Y. Lim, I.-M. Lee, K.-Y. Kim, and B. Lee, “Faced folded rods as nano antenna for optical devices,” Proc. SPIE7851, 78510S (2010). [CrossRef]
  25. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010). [CrossRef]
  26. E. Palik, Handboook of Optical Constant of Solids (Academic, 1985).
  27. E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Select. Top. Quantum Electron.14, 1448–1461 (2008). [CrossRef]
  28. R. D. Murley, “Mie theory of light scattering—limitations on accuracy of approximate methods of computation,” J. Phys. Chem.64, 161–162 (1960). [CrossRef]
  29. W. Stutzman and G. Thiele, Antenna Theory and Design, 2nd ed. (John Wiley & Sons, 1998).
  30. We can find almost the same response when the length of vertical rods is ∼ 430 nm, the same as the folded rods when unfolded.
  31. Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron.46, 300–305 (2010). [CrossRef]
  32. Y. Lim, S.-Y. Lee, and B. Lee, “Transflective digital holographic microscopy and its use for probing plasmonic light beaming,” Opt. Express19, 5202–5212 (2011). [CrossRef] [PubMed]
  33. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  34. J. Xu, T. Xu, J. Wang, and Q. Tian, “Design tips of nanoapertures with strong field enhancement and proposal of novel L-shaped aperture,” Opt. Eng.44, 018001 (2004). [CrossRef]
  35. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).
  36. J. Hahn, H. Kim, S.-W. Cho, and B. Lee, “Phase-shifting interferometry with genetic algorithm-based twin image noise elimination,” Appl. Opt.47, 4068–4076 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited