OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20940–20952

Creating effective focus cues in multi-plane 3D displays

Sowmya Ravikumar, Kurt Akeley, and Martin S. Banks  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20940-20952 (2011)
http://dx.doi.org/10.1364/OE.19.020940


View Full Text Article

Enhanced HTML    Acrobat PDF (1676 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Focus cues are incorrect in conventional stereoscopic displays. This causes a dissociation of vergence and accommodation, which leads to visual fatigue and perceptual distortions. Multi-plane displays can minimize these problems by creating nearly correct focus cues. But to create the appearance of continuous depth in a multi-plane display, one needs to use depth-weighted blending: i.e., distribute light intensity between adjacent planes. Akeley et al. [ACM Trans. Graph. 23, 804 (2004)] and Liu and Hua [Opt. Express 18, 11562 (2009)] described rather different rules for depth-weighted blending. We examined the effectiveness of those and other rules using a model of a typical human eye and biologically plausible metrics for image quality. We find that the linear blending rule proposed by Akeley and colleagues [ACM Trans. Graph. 23, 804 (2004)] is the best solution for natural stimuli.

© 2011 OSA

OCIS Codes
(120.2040) Instrumentation, measurement, and metrology : Displays
(330.1400) Vision, color, and visual optics : Vision - binocular and stereopsis

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: August 5, 2011
Revised Manuscript: September 22, 2011
Manuscript Accepted: September 24, 2011
Published: October 6, 2011

Citation
Sowmya Ravikumar, Kurt Akeley, and Martin S. Banks, "Creating effective focus cues in multi-plane 3D displays," Opt. Express 19, 20940-20952 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20940


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. V. Krishnan, S. Phillips, and L. Stark, “Frequency analysis of accommodation, accommodative vergence and disparity vergence,” Vision Res.13(8), 1545–1554 (1973). [CrossRef] [PubMed]
  2. J. P. Frisby, D. Buckley, and P. A. Duke, “Evidence for good recovery of lengths of real objects seen with natural stereo viewing,” Perception25(2), 129–154 (1996). [CrossRef] [PubMed]
  3. S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis.5(10), 834–862 (2005). [CrossRef] [PubMed]
  4. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis.8(3), 33, 1–30 (2008). [CrossRef] [PubMed]
  5. J. P. Wann, S. Rushton, and M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res.35(19), 2731–2736 (1995). [CrossRef] [PubMed]
  6. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph.23(3), 804–813 (2004). [CrossRef]
  7. M. Emoto, T. Niida, and F. Okano, “Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television,” J. Disp. Technol.1(2), 328–340 (2005). [CrossRef]
  8. M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol.53(3), 030201 (2009). [CrossRef]
  9. T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: predicting visual discomfort with stereo displays,” J. Vis.11(8), 1–29 (2011). [CrossRef] [PubMed]
  10. T. A. Nwodoth and S. A. Benton, “Chidi holographic video system,” in SPIE Proceedings on Practical Holography, 3956 (2000).
  11. G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and ., “100 million-voxel volumetric display,” Proc. SPIE712, 300–312 (2002). [CrossRef]
  12. B. T. Schowengerdt and E. J. Seibel, “True 3-D scanned voxel displays using single or multiple light sources,” J. Soc. Inf. Disp.14(2), 135–143 (2006). [CrossRef]
  13. S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual frequency liquid crystal varifocal lens,” Jpn. J. Appl. Phys.39(Part 1, No. 2A), 480–484 (2000).
  14. A. Sullivan, “Depth cube solid-state 3D volumetric display,” Proc. SPIE5291, 279–284 (2004). [CrossRef]
  15. T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp.13(8), 665–671 (2005). [CrossRef]
  16. S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express18(11), 11562–11573 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-11-11562 . [CrossRef] [PubMed]
  17. G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express17(18), 15716–15725 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-18-15716 . [CrossRef] [PubMed]
  18. K. J. MacKenzie, D. M. Hoffman, and S. J. Watt, “Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control,” J. Vis.10(8), 1–20 (2010). [CrossRef] [PubMed]
  19. J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical ray tracing of schematic eyes,” Am. J. Ophthalmol.120(2), 227 240 (1995).
  20. Y. L. Chen, B. Tan, and J. W. L. Lewis, “Simulation of eccentric photorefraction images,” Opt. Express11(14), 1628–1642 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-14-1628 . [CrossRef] [PubMed]
  21. D. G. Green and F. W. Campbell, “Effect of focus on the visual response to a sinusoidally modulated spatial stimulus,” J. Opt. Soc. Am. A55(9), 1154–1157 (1965). [CrossRef]
  22. E. M. Granger and K. N. Cupery, “Optical merit function (SQF), which correlates with subjective image judgments,” Photogr. Sci. Eng.16, 221–230 (1972).
  23. M. A. Georgeson, K. A. May, T. C. A. Freeman, and G. S. Hesse, “From filters to features: scale-space analysis of edge and blur coding in human vision,” J. Vis.7(13), 7, 1–21 (2007). [CrossRef] [PubMed]
  24. D. A. Owens, “A comparison of accommodative responsiveness and contrast sensitivity for sinusoidal gratings,” Vision Res.20(2), 159–167 (1980). [CrossRef] [PubMed]
  25. S. Mathews and P. B. Kruger, “Spatiotemporal transfer function of human accommodation,” Vision Res.34(15), 1965–1980 (1994). [CrossRef] [PubMed]
  26. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A19(12), 2329–2348 (2002). [CrossRef] [PubMed]
  27. D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A2(7), 1087–1093 (1985). [CrossRef] [PubMed]
  28. M. S. Banks, W. S. Geisler, and P. J. Bennett, “The physical limits of grating visibility,” Vision Res.27(11), 1915–1924 (1987). [CrossRef] [PubMed]
  29. J. H. van Hateren and A. van der Schaaf, “Temporal properties of natural scenes,” Proceedings of the IS&T/SPIE: 265. Human Vision and Electronic Imaging pp.139–143 (1996).
  30. D. J. Field and N. Brady, “Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes,” Vision Res.37(23), 3367–3383 (1997). [CrossRef] [PubMed]
  31. S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A25(10), 2395–2407 (2008). [CrossRef] [PubMed]
  32. D. R. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, “Visual benefit of correcting higher order aberrations of the eye visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg.16(5), S554–S559 (2000). [PubMed]
  33. G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A19(2), 266–275 (2002). [CrossRef] [PubMed]
  34. W. N. Charman and J. Tucker, “Accommodation as a function of object form,” Am. J. Optom. Physiol. Opt.55(2), 84–92 (1978). [PubMed]
  35. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis.4(4), 329–351 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited