OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 21003–21010

Supercontinuum generation in chalcogenide-silica step-index fibers

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St.J. Russell  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 21003-21010 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2885 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore the use of a highly nonlinear chalcogenide-silica waveguide for supercontinuum generation in the near infrared. The structure was fabricated by a pressure-assisted melt-filling of a silica capillary fiber (1.6 µm bore diameter) with Ga4Ge21Sb10S65 glass. It was designed to have zero group velocity dispersion (for HE11 core mode) at 1550 nm. Pumping a 1 cm length with 60 fs pulses from an erbium-doped fiber laser results in the generation of octave-spanning supercontinuum light for pulse energies of only 60 pJ. Good agreement is obtained between the experimental results and theoretical predictions based on numerical solutions of the generalized nonlinear Schrödinger equation. The pressure-assisted melt-filling approach makes it possible to realize highly nonlinear devices with unusual combinations of materials. For example, we show numerically that a 1 cm long As2S3:silica step-index fiber with a core diameter of 1 µm, pumped by 60 fs pulses at 1550 nm, would generate a broadband supercontinuum out to 4 µm.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 29, 2011
Revised Manuscript: September 26, 2011
Manuscript Accepted: September 27, 2011
Published: October 6, 2011

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St.J. Russell, "Supercontinuum generation in chalcogenide-silica step-index fibers," Opt. Express 19, 21003-21010 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot, and A. Kudlinski, “Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions,” Opt. Express 18(24), 24729–24734 (2010). [CrossRef] [PubMed]
  2. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004). [CrossRef] [PubMed]
  3. A. Rulkov, M. Vyatkin, S. Popov, J. Taylor, and V. Gapontsev, “High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping,” Opt. Express 13(2), 377–381 (2005). [CrossRef] [PubMed]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef] [PubMed]
  5. M. Foster and A. Gaeta, “Ultra-low threshold supercontinuum generation in sub-wavelength waveguides,” Opt. Express 12(14), 3137–3143 (2004). [CrossRef] [PubMed]
  6. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  7. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  8. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12(11), 113001 (2010). [CrossRef]
  9. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14(11), 4928–4934 (2006). [CrossRef] [PubMed]
  10. J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008). [CrossRef]
  11. C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011). [CrossRef]
  12. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. B. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011). [CrossRef] [PubMed]
  13. B. G. Aitken, “GeAs sulfide glasses with unusually low network connectivity,” J. Non-Cryst. Solids 345–346, 1–6 (2004). [CrossRef]
  14. N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011). [CrossRef] [PubMed]
  15. N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010). [CrossRef]
  16. N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011). [CrossRef]
  17. A. S. Tverjanovich and E. V. Tereshchenko, “Structural investigation of glasses in the x(0.16GaCh(2) · 0.84GeCh(2)) · (1-x)(SbCh(1.5)) (Ch = S, Se) system,” Glass Phys. Chem. 35(5), 475–478 (2009). [CrossRef]
  18. A. S. Tverjanovich and E. V. Tereshchenko, “Physicochemical and optical properties of glasses in the Ga4Ge21S50-Sb2S3 system,” Glass Phys. Chem. 35(4), 360–363 (2009). [CrossRef]
  19. M. Foster, K. Moll, and A. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12(13), 2880–2887 (2004). [CrossRef] [PubMed]
  20. The minimum effective mode area was determined by searching for the core radius that yields the smallest effective area at a fixed core index.
  21. Schott Optical Glass Data Sheets (2006).
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  23. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt. 48(29), 5467–5474 (2009). [CrossRef] [PubMed]
  24. A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16(22), 18524–18534 (2008). [CrossRef] [PubMed]
  25. F. Mitschke, Fiber Optics: Physics and Technology (Springer, 2010).
  26. N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27(3), 152–154 (2002). [CrossRef] [PubMed]
  27. Heraeus Datasheet for Suprasil glass Heraeus Datasheet for Suprasil glass.
  28. I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4, 665–678 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited