OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 21074–21080

Junction-type photonic crystal waveguides for notch- and pass-band filtering

Naeem Shahid, Muhammad Amin, Shagufta Naureen, Marcin Swillo, and Srinivasan Anand  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 21074-21080 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3127 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Evolution of the mode gap and the associated transmission mini stop-band (MSB) as a function of photonic crystal (PhC) waveguide width is theoretically and experimentally investigated. The change of line-defect width is identified to be the most appropriate way since it offers a wide MSB wavelength tuning range. A high transmission narrow-band filter is experimentally demonstrated in a junction-type waveguide composed of two PhC waveguides with slightly different widths. The full width at half maximum is 5.6 nm; the peak transmission is attenuated by only ~5 dB and is ~20 dB above the MSBs. Additionally, temperature tuning of the filter were also performed. The results show red-shift of the transmission peak and the MSB edges with a gradient of dλ/dT = 0.1 nm/°C. It is proposed that the transmission MSBs in such junction-type cascaded PhC waveguides can be used to obtain different types of filters.

© 2011 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3130) Integrated optics : Integrated optics materials
(220.4830) Optical design and fabrication : Systems design
(230.7390) Optical devices : Waveguides, planar
(250.5300) Optoelectronics : Photonic integrated circuits
(260.2030) Physical optics : Dispersion
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: August 3, 2011
Revised Manuscript: September 3, 2011
Manuscript Accepted: September 20, 2011
Published: October 7, 2011

Naeem Shahid, Muhammad Amin, Shagufta Naureen, Marcin Swillo, and Srinivasan Anand, "Junction-type photonic crystal waveguides for notch- and pass-band filtering," Opt. Express 19, 21074-21080 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  2. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13(18), 7145–7159 (2005). [CrossRef] [PubMed]
  3. E. Schwoob, H. Benisty, C. Weisbuch, C. Cuisin, E. Derouin, O. Drisse, G. H. Duan, L. Legouézigou, O. Legouézigou, and F. Pommereau, “Enhanced gain measurement at mode singularities in InP-based photonic crystal waveguides,” Opt. Express 12(8), 1569–1574 (2004). [CrossRef] [PubMed]
  4. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]
  5. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008). [CrossRef] [PubMed]
  6. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92(8), 083501 (2008). [CrossRef]
  7. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010). [CrossRef] [PubMed]
  8. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002). [CrossRef]
  9. A. Shinya, M. Notomi, and E. Kuramochi, “Single-mode transmission in commensurate width-varied line-defect SOI photonic crystal waveguides,” Proc. SPIE 5000, 125–135 (2003). [CrossRef]
  10. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006). [CrossRef]
  11. K. Inoshita and T. Baba, “Lasing at bend, branch and intersection of photonic crystal waveguides,” Electron. Lett. 39(11), 844–846 (2003). [CrossRef]
  12. B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  13. H. Benisty, C. Cambournac, F. Van Laere, and D. Van Thourhout, “Photonic-crystal demultiplexer with improved crosstalk by second-order cavity filtering,” J. Lightwave Technol. 28(8), 1201–1208 (2010). [CrossRef]
  14. E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, C. Cuisin, E. Derouin, O. Drisse, G.-H. Duan, L. Legouézigou, O. Legouézigou, F. Pommereau, S. Golka, H. Heidrich, H. J. Hensel, and K. Janiak, “Compact wavelength monitoring by lateral outcoupling in wedged photonic crystal multimode waveguides,” Appl. Phys. Lett. 86(10), 101107 (2005). [CrossRef]
  15. S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle, and R. Houdré, “Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B 63(11), 113311 (2001). [CrossRef]
  16. M. Mulot, S. Anand, M. Swillo, M. Qiu, B. Jaskorzynska, and A. Talneau, “Low-loss InP-based photonic-crystal waveguides etched with Ar/Cl2 chemically assisted ion beam etching,” J. Vac. Sci. Technol. B 21(2), 900–903 (2003). [CrossRef]
  17. N. Shahid, N. Speijcken, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, “Ultrasharp ministop-band edge for subnanometer tuning resolution,” Appl. Phys. Lett. 98(8), 081112 (2011). [CrossRef]
  18. S. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001). [CrossRef] [PubMed]
  19. M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B 64(15), 155113 (2001). [CrossRef]
  20. M. Qiu, F2P software, http://www.imit.kth.se/info/FOFU/PC/F2P/
  21. A. Berrier, M. Mulot, S. Anand, A. Talneau, R. Ferrini, and R. Houdré, “Characterization of the feature-size dependence in Ar/Cl2 chemically assisted ion beam etching of InP-based photonic crystal devices,” J. Vac. Sci. Technol. B 25(1), 1–10 (2007). [CrossRef]
  22. K. Ogusu and K. Takayama, “Transmission characteristics of photonic crystal waveguides with stubs and their application to optical filters,” Opt. Lett. 32(15), 2185–2187 (2007). [CrossRef] [PubMed]
  23. B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84(6), 846–848 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited