OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21145–21154

NADH fluorescence as a photobiological metric in 5-aminolevlinic acid (ALA)-photodynamic therapy

Guan-Chin Su, Yau-Huei Wei, and Hsing-Wen Wang  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21145-21154 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1906 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photodynamic therapy (PDT) dosimetry is complex as many factors are involved and varied interdependently. Monitoring the biological consequence of PDT such as cell death is the most direct approach to assess treatment efficacy. In this study, we performed 5-aminolevlinic acid (ALA)-PDT in vitro to induce different cell death modes (i.e., slight cell cytotoxicity, apoptosis, and necrosis) by a fixed fluence rate of 10 mW/cm2 and varied fluences (1, 2, and 6 J/cm2). Time course measurements of cell viability, caspase-3 activity, and DNA fragmentation were conducted to determine the mode of cell death. We demonstrated that NADH fluorescence lifetime together with NADH fluorescence intensity permit us to detect apoptosis and differentiate it from necrosis. This feature will be unique in the use of optimizing apoptosis-favored treatments such as metronomic PDT.

© 2011 OSA

OCIS Codes
(170.1420) Medical optics and biotechnology : Biology
(170.1610) Medical optics and biotechnology : Clinical applications
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.5180) Medical optics and biotechnology : Photodynamic therapy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 10, 2011
Revised Manuscript: October 3, 2011
Manuscript Accepted: October 3, 2011
Published: October 10, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Guan-Chin Su, Yau-Huei Wei, and Hsing-Wen Wang, "NADH fluorescence as a photobiological metric in 5-aminolevlinic acid (ALA)-photodynamic therapy," Opt. Express 19, 21145-21154 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003). [CrossRef] [PubMed]
  2. B. C. Wilson, M. S. Patterson, and L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a New paradigm,” Lasers Med. Sci. 12(3), 182–199 (1997). [CrossRef] [PubMed]
  3. K. K.-H. Wang, S. Mitra, and T. H. Foster, “A comprehensive mathematical model of microscopic dose deposition in photodynamic therapy,” Med. Phys. 34(1), 282–293 (2007). [CrossRef] [PubMed]
  4. M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006). [CrossRef] [PubMed]
  5. M. J. Niedre, A. J. Secord, M. S. Patterson, and B. C. Wilson, “In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy,” Cancer Res. 63(22), 7986–7994 (2003). [PubMed]
  6. K. K. Wang, S. Mitra, and T. H. Foster, “Photodynamic dose does not correlate with long-term tumor response to mTHPC-PDT performed at several drug-light intervals,” Med. Phys. 35(8), 3518–3526 (2008). [CrossRef] [PubMed]
  7. S. Gross, A. Gilead, A. Scherz, M. Neeman, and Y. Salomon, “Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI,” Nat. Med. 9(10), 1327–1331 (2003). [CrossRef] [PubMed]
  8. J. C. Finlay and T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,” Med. Phys. 31(7), 1949–1959 (2004). [CrossRef] [PubMed]
  9. A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001). [CrossRef] [PubMed]
  10. G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11(9), 3543–3552 (2005). [CrossRef] [PubMed]
  11. B. Chen, B. W. Pogue, I. A. Goodwin, J. A. O’Hara, C. M. Wilmot, J. E. Hutchins, P. J. Hoopes, and T. Hasan, “Blood flow dynamics after photodynamic therapy with verteporfin in the RIF-1 tumor,” Radiat. Res. 160(4), 452–459 (2003). [CrossRef] [PubMed]
  12. S. K. Bisland, L. Lilge, A. Lin, R. Rusnov, and B. C. Wilson, “Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors,” Photochem. Photobiol. 80(1), 22–30 (2004). [CrossRef] [PubMed]
  13. A. Bogaards, A. Varma, K. Zhang, D. Zach, S. K. Bisland, E. H. Moriyama, L. Lilge, P. J. Muller, and B. C. Wilson, “Fluorescence image-guided brain tumour resection with adjuvant metronomic photodynamic therapy: pre-clinical model and technology development,” Photochem. Photobiol. Sci. 4(5), 438–442 (2005). [CrossRef] [PubMed]
  14. B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” Lasers Surg. Med. 38(5), 489–493 (2006). [CrossRef] [PubMed]
  15. B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, and J. Morgan, “Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors,” Cancer Res. 64(6), 2120–2126 (2004). [CrossRef] [PubMed]
  16. D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res. 65(19), 8766–8773 (2005). [CrossRef] [PubMed]
  17. M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007). [CrossRef] [PubMed]
  18. H. W. Wang, Y. H. Wei, and H. W. Guo, “Reduced nicotinamide adenine dinucleotide (NADH) fluorescence for the detection of cell death,” Anticancer. Agents Med. Chem. 9(9), 1012–1017 (2009). [PubMed]
  19. H. W. Wang, V. Gukassyan, C. T. Chen, Y. H. Wei, H. W. Guo, J. S. Yu, and F. J. Kao, “Differentiation of apoptosis from necrosis by dynamic changes of reduced nicotinamide adenine dinucleotide fluorescence lifetime in live cells,” J. Biomed. Opt. 13(5), 054011 (2008). [CrossRef] [PubMed]
  20. J. S. Yu, H. W. Guo, C. H. Wang, Y. H. Wei, and H. W. Wang, “Increase of reduced nicotinamide adenine dinucleotide fluorescence lifetime precedes mitochondrial dysfunction in staurosporine-induced apoptosis of HeLa cells,” J. Biomed. Opt. 16(3), 036008 (2011). [CrossRef] [PubMed]
  21. H. W. Guo, Y. H. Wei, and H. W. Wang, “Reduced nicotinamide adenine dinucleotide fluorescence lifetime detected poly(adenosine-5′-diphosphate-ribose) polymerase-1-mediated cell death and therapeutic effect of pyruvate,” J. Biomed. Opt. 16(6), 068001 (2011). [CrossRef] [PubMed]
  22. D. Grebeňová, K. Kuželová, K. Smetana, M. Pluskalová, H. Cajthamlová, I. Marinov, O. Fuchs, J. Souček, P. Jarolím, and Z. Hrkal, “Mitochondrial and endoplasmic reticulum stress-induced apoptotic pathways are activated by 5-aminolevulinic acid-based photodynamic therapy in HL60 leukemia cells,” J. Photochem. Photobiol. B 69(2), 71–85 (2003). [CrossRef] [PubMed]
  23. N. L. Oleinick, R. L. Morris, and I. Belichenko, “The role of apoptosis in response to photodynamic therapy: what, where, why, and how,” Photochem. Photobiol. Sci. 1(1), 1–21 (2002). [CrossRef] [PubMed]
  24. F. Giuntini, L. Bourré, A. J. MacRobert, M. Wilson, and I. M. Eggleston, “Improved peptide prodrugs of 5-ALA for PDT: rationalization of cellular accumulation and protoporphyrin IX production by direct determination of cellular prodrug uptake and prodrug metabolization,” J. Med. Chem. 52(13), 4026–4037 (2009). [CrossRef] [PubMed]
  25. B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol. 74(6), 817–824 (2001). [CrossRef] [PubMed]
  26. H. W. Guo, C. T. Chen, Y. H. Wei, O. K. Lee, V. Gukassyan, F. J. Kao, and H. W. Wang, “Reduced nicotinamide adenine dinucleotide fluorescence lifetime separates human mesenchymal stem cells from differentiated progenies,” J. Biomed. Opt. 13(5), 050505 (2008). [CrossRef] [PubMed]
  27. H. Okada and T. W. Mak, “Pathways of apoptotic and non-apoptotic death in tumour cells,” Nat. Rev. Cancer 4(8), 592–603 (2004). [CrossRef] [PubMed]
  28. S. Elmore, “Apoptosis: a review of programmed cell death,” Toxicol. Pathol. 35(4), 495–516 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited