OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21295–21304

Design of a Bragg fiber with large mode area for mid-infrared applications

Somnath Ghosh, Sonali Dasgupta, Ravi K. Varshney, David. J. Richardson, and Bishnu P. Pal  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 21295-21304 (2011)
http://dx.doi.org/10.1364/OE.19.021295


View Full Text Article

Enhanced HTML    Acrobat PDF (1230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design of an all-solid, soft glass-based, large mode area Bragg fiber for effective single mode operation with mode effective area exceeding 1100 µm2 across the wavelength range of 2 – 4 μm is reported. The design adopts a new strategy to induce large differential loss between the fundamental and higher order modes for effective single-mode operation within few tens of centimetres length of an otherwise multimode fiber. In addition to having the potential for the targeted application in high power laser delivery systems; complemented by a zero dispersion wavelength at 2.04 µm and rapidly developing mid-IR optical sources, the proposed fiber should also be attractive for generation of high power, single mode and less divergent supercontinuum light over this mid-IR window.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 11, 2011
Revised Manuscript: September 8, 2011
Manuscript Accepted: September 8, 2011
Published: October 12, 2011

Citation
Somnath Ghosh, Sonali Dasgupta, Ravi K. Varshney, David. J. Richardson, and Bishnu P. Pal, "Design of a Bragg fiber with large mode area for mid-infrared applications," Opt. Express 19, 21295-21304 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21295


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Guo, Y. Wang, C. Peng, H. L. Zhang, G. P. Luo, H. Q. Le, C. Gmachl, D. L. Sivco, M. L. Peabody, and A. Y. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express12(1), 208–219 (2004). [CrossRef] [PubMed]
  2. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng.37(2-3), 101–114 (2002). [CrossRef]
  3. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express18(25), 26704–26719 (2010). [CrossRef] [PubMed]
  4. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Room temperature mid-infrared quantum cascade lasers,” Electron. Lett.32(6), 560–561 (1996). [CrossRef]
  5. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, “High power mid-infrared (λ ~ 5 μm) quantum cascade lasers operating above room temperature,” Appl. Phys. Lett.68(26), 3680–3682 (1996). [CrossRef]
  6. M. Lončar, B. G. Lee, L. Diehl, M. A. Belkin, F. Capasso, M. Giovannini, J. Faist, and E. Gini, “Design and fabrication of photonic crystal quantum cascade lasers for optofluidics,” Opt. Express15(8), 4499–4514 (2007). [CrossRef] [PubMed]
  7. S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 µm,” IEEE J. Sel. Top. Quantum Electron.13(3), 567–572 (2007). [CrossRef]
  8. Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, “Mode-locked Tm-Ho fiber laser with a Sb-based SESAM,” CMK2, OSA/ CLEO (2011).
  9. D. G. Lancaster, A. Sabella, A. Hemming, S. Bennetts, and S. D. Jackson, “Power-scalable thulium and holmium fibre lasers pumped by 793 nm diode lasers,” WE5, OSA/ASSP (2007).
  10. J. Wu, Z. Yao, J. Zong, and A. C. Pirson, “Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber,” Proc. SPIE7195, 71951K (2009). [CrossRef]
  11. M. E. Likhachev, S. L. Semjonov, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Yu. Salganskii, M. A. Gurjanov, A. N. Gurjanov, R. Jamier, P. Viale, S. Fevrier, and J. M. Blondy, “Development and study of Bragg fibres with a large mode field and low optical losses,” IEEE J. Quantum Electron.36(7), 581–586 (2006). [CrossRef]
  12. S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express14(2), 562–569 (2006). [CrossRef] [PubMed]
  13. S. Février, P. Viale, F. Gerome, P. Leproux, P. Roy, J. M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett.39(17), 1240–1242 (2003). [CrossRef]
  14. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express17(22), 20249–20255 (2009). [CrossRef] [PubMed]
  15. S. Dasgupta, B. P. Pal, and M. R. Shenoy, “Nonlinear spectral broadening in solid-core Bragg fibers,” J. Lightwave Technol.25(9), 2475–2481 (2007). [CrossRef]
  16. H. T. Bookey, S. Dasgupta, N. Bezawada, B. P. Pal, A. Sysoliatin, J. E. McCarthy, M. Salganskii, V. Khopin, and A. K. Kar, “Experimental demonstration of spectral broadening in an all-silica Bragg fiber,” Opt. Express17(19), 17130–17135 (2009). [CrossRef] [PubMed]
  17. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am.68(9), 1196–1201 (1978). [CrossRef]
  18. S. Dasgupta, B. P. Pal, and M. R. Shenoy, Chapter on Photonic bandgap guided Bragg fibers in Guided Wave Optical Components and Devices: Basics, Technology, and Applications, B. P. Pal (Ed.), (Elsevier Academic Press, 2006).
  19. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature420(6916), 650–653 (2002). [CrossRef] [PubMed]
  20. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannepoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol.17(11), 2039–2041 (1999). [CrossRef]
  21. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol.23(6), 2046–2054 (2005). [CrossRef]
  22. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single mode high-index core one-dimensional microstructured optical fiber with high index contrast for highly nonlinear optical deivces,” Appl. Phys. Lett.87(8), 081110–081113 (2005). [CrossRef]
  23. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express16(10), 7161–7168 (2008). [CrossRef] [PubMed]
  24. G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett.41(14), 795–797 (2005). [CrossRef]
  25. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Generating mid-IR source using As2 S3-based chalcogenide photonic crystal fibers,” CThN6, OSA/CLEO/IQEC (2009).
  26. G. Genty, T. Ritari, and H. Ludvigsen, “Supercontinuum generation in large mode-area microstructured fibers,” Opt. Express13(21), 8625–8633 (2005). [CrossRef] [PubMed]
  27. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett.8(11), 1510–1512 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited