OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21358–21369

Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor

Neil Corzo, Alberto M. Marino, Kevin M. Jones, and Paul D. Lett  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21358-21369 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1049 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present experimental results on the generation of multi-spatial-mode, single-beam, quadrature squeezed light using four-wave mixing in hot Rb vapor. Squeezing and phase-sensitive deamplification are observed over a range of powers and detunings near the 85Rb D1 atomic transition. We observe −3 dB of vacuum quadrature squeezing, comparable to the best single-spatial mode results previously reported using atomic vapors, however, produced here in multiple spatial modes. We confirm that the squeezing is present in more than one transverse mode by studying the spatial distribution of the noise properties of the field.

© 2011 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.6570) Quantum optics : Squeezed states

ToC Category:
Quantum Optics

Original Manuscript: August 19, 2011
Revised Manuscript: September 26, 2011
Manuscript Accepted: September 27, 2011
Published: October 12, 2011

Neil Corzo, Alberto M. Marino, Kevin M. Jones, and Paul D. Lett, "Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor," Opt. Express 19, 21358-21369 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett.55, 2409–2412 (1985). [CrossRef] [PubMed]
  2. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D23, 1693–1708 (1981). [CrossRef]
  3. K. McKenzie, D. Shaddock, D. McClelland, B. Buchler, and P.-K. Lam, “Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection,” Phys. Rev. Lett.88, 231102 (2002). [CrossRef] [PubMed]
  4. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10 dB quantum-noise reduction,” Phys. Rev. Lett.100, 033602 (2008) [CrossRef] [PubMed]
  5. T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett.91, 080404 (2003). [CrossRef] [PubMed]
  6. A. S. Coelho, F. A. S. Barbosa, K. N. Cassemiro, A. S. Villar, M. Martinelli, and P. Nussenzveig, “Three-color entanglement,” Science326, 823–826 (2009). [CrossRef] [PubMed]
  7. N. C. Menicucci, S. T. Flammina, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett.101, 130501 (2008). [CrossRef] [PubMed]
  8. A. Eckstein and C. Silberhorn, “Broadband frequency mode entanglement in waveguided parametric downconvertion,” Opt. Lett.33, 1825–1827 (2008). [CrossRef] [PubMed]
  9. B. Chalopin, F. Scazza, C. Fabre, and N. Treps, “Direct generation of a multi-transverse mode non-classical state of light,” Opt. Express19, 4405–4410 (2011). [CrossRef] [PubMed]
  10. J. Janousek, K. Wagner, J. F. Morizur, N. Treps, P. K. Lam, C. C. Harb, and H. A. Bachor, “Optical entanglement of co-propagating modes,” Nat. Photonics3, 399–402 (2009). [CrossRef]
  11. P. Kumar and M. Kolobov, “Degenerate four-wave mixing as a source for spatially-broadband squeezed light,” Opt. Commun.104, 374–378 (1994). [CrossRef]
  12. M. Kolobov and P. Kumar, “Sub-shot-noise microscopy: imaging of faint phase objects with squeezed light,” Opt. Lett.18, 849–851 (1993). [CrossRef] [PubMed]
  13. M. Vasilyev, N. Stelmakh, and P. Kumar, “Phase-sensitive image amplification with elliptical Gaussian pump,” Opt. Express17, 11415–11425 (2009). [CrossRef] [PubMed]
  14. I. Sokolov and M. Kolobov, “Squeezed-light source for superresolving microscopy,” Opt. Lett.29, 703–705 (2004). [CrossRef] [PubMed]
  15. L. Lopez, N. Treps, B. Chalopin, C. Fabre, and A. Maitre, “Quantum processing of images by continuous wave optical parametric amplification,” Phys. Rev. Lett.100, 013604 (2008). [CrossRef] [PubMed]
  16. M. I. Kolobov, “The spatial behavior of nonclassical light,” Rev. Mod. Phys.71, 1539–1589 (1999). [CrossRef]
  17. A. Gatti, E. Brambilla, and L. Lugiato, “Quantum Imaging,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2007), Vol. 51, p. 251. [CrossRef]
  18. M. Kolobov, ed., Quantum Imaging (Springer, 2007). [CrossRef]
  19. E. Lantz and F. Devaux, “Parametric amplification of images: from time gating to noiseless amplification,” IEEE J. Sel. Top. Quantum Electron.14, 635–647 (2008). [CrossRef]
  20. M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun.2, 174 (2011). [CrossRef] [PubMed]
  21. C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave mixing amplifier,” Phys. Rev. A78, 043816 (2008). [CrossRef]
  22. R. Pooser, A. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Quantum correlated light beams from non-degenerate four-wave mixing in an atomic vapor: the D1 and D2 lines of 85Rb and 87Rb,” Opt. Express17, 16722–16730 (2009). [CrossRef] [PubMed]
  23. V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett.100, 143601 (2008). [CrossRef] [PubMed]
  24. A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized correlations in twin light beams with orbital angular momentum,” Phys. Rev. Lett.101, 093602 (2008). [CrossRef] [PubMed]
  25. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008). [CrossRef] [PubMed]
  26. R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Low-noise amplification of a continuous-variable quantum state,” Phys. Rev. Lett.103, 010501 (2009). [CrossRef] [PubMed]
  27. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein–Podolsky–Rosen entanglement,” Nature457, 859–862 (2009). [CrossRef] [PubMed]
  28. A. Lambrecht, T. Coudreau, A. M. Steinberg, and E. Giacobino, “Squeezing with cold atoms,” Europhys. Lett.36, 93–98 (1996). [CrossRef]
  29. I. H. Agha, G. Messin, and P. Grangier, “Generation of pulsed and continuous-wave squeezed light with 87Rb vapor,” Opt. Express18, 4198–4205 (2010). [CrossRef] [PubMed]
  30. Note that the definitions of Δ and δ used here differ from those in Ref. [22].
  31. W. V. Davis, M. Kauranen, E. M. Nagasako, R. J. Gehr, A. L. Gaeta, and R. W. Boyd, “Excess noise acquired by a laser beam after propagating through an atomic-potassium vapor,” Phys. Rev. A51, 4152–4159 (1995). [CrossRef] [PubMed]
  32. K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, “Quantum noise locking,” J. Opt. B7, S241–S428 (2005).
  33. M. Martinelli, N. Treps, S. Ducci, S. Gigan, A. Matre, and C. Fabre, “Experimental study of the spatial distribution of quantum correlations in a confocal optical parametric oscillator,” Phys. Rev. A67, 023808 (2003). [CrossRef]
  34. J. Levenson, I. Abram, T. Rivera, and P. Grangier, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B10, 2233–2238 (1993). [CrossRef]
  35. S.-K. Choi, M. Vasilyev, and P. Kumar, “Noiseless optical amplification of images,” Phys. Rev. Lett.83, 1938–1941 (1999). [CrossRef]
  36. A. Mosset, F. Devaux, and E. Lantz, “Spatially noiseless optical amplification of images,” Phys. Rev. Lett.94, 223603 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited