OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21370–21384

Positional stability of holographic optical traps

Arnau Farré, Marjan Shayegan, Carol López-Quesada, Gerhard A. Blab, Mario Montes-Usategui, Nancy R. Forde, and Estela Martín-Badosa  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21370-21384 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1785 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The potential of digital holography for complex manipulation of micron-sized particles with optical tweezers has been clearly demonstrated. By contrast, its use in quantitative experiments has been rather limited, partly due to fluctuations introduced by the spatial light modulator (SLM) that displays the kinoforms. This is an important issue when high temporal or spatial stability is a concern. We have investigated the performance of both an analog-addressed and a digitally-addressed SLM, measuring the phase fluctuations of the modulated beam and evaluating the resulting positional stability of a holographic trap. We show that, despite imparting a more unstable modulation to the wavefront, our digitally-addressed SLM generates optical traps in the sample plane stable enough for most applications. We further show that traps produced by the analog-addressed SLM exhibit a superior pointing stability, better than 1 nm, which is comparable to that of non-holographic tweezers. These results suggest a means to implement precision force measurement experiments with holographic optical tweezers (HOTs).

© 2011 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.6120) Optical devices : Spatial light modulators
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: July 21, 2011
Revised Manuscript: September 17, 2011
Manuscript Accepted: September 17, 2011
Published: October 13, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Arnau Farré, Marjan Shayegan, Carol López-Quesada, Gerhard A. Blab, Mario Montes-Usategui, Nancy R. Forde, and Estela Martín-Badosa, "Positional stability of holographic optical traps," Opt. Express 19, 21370-21384 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6(1), 24–27 (1999).
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
  3. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, ““Size selective trapping with optical “cogwheel” tweezers,” Opt. Express 12(17), 4129–4135 (2004).
  4. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
  5. K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
  6. E. R. Dufresne and D. G. Grier, “Optical tweezer array and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
  7. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
  8. R. Di Leonardo, “F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007).
  9. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons Inc., 2009).
  10. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).
  11. A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express 16(25), 20987–21003 (2008).
  12. A. van der Horst, B. P. B. Downing, and N. R. Forde, “Position and intensity modulations in holographic optical traps created by a liquid crystal spatial light modulator,” in Optical Trapping Applications, Vol. 1 of 2009 OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMB3.
  13. C. O. Mejean, A. W. Schaefer, E. A. Millman, P. Forscher, and E. R. Dufresne, “Multiplexed force measurements on live cells with holographic optical tweezers,” Opt. Express 17(8), 6209–6217 (2009).
  14. A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3(4), 224–233 (2010).
  15. L. T. McLane, K. M. Carroll, J. Scrimgeour, M. D. Bedoya, A. Kramer, and J. E. Curtis, “Force measurements with a translating holographic optical trap,” Proc. SPIE 7762(77621J), 77621J (2010).
  16. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
  17. S. Serati and J. Harriman, “Spatial light modulator considerations for beam control in optical manipulation applications,” Proc. SPIE 6326(63262W), 63262W (2006).
  18. A. Hermerschmidt, S. Osten, S. Krüger, and T. Blümel, “Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution,” Proc. SPIE 6584(65840E), 65840E (2007).
  19. J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarcevic, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett. 20(1), 60–62 (2008).
  20. A. Lizana, A. Márquez, L. Lobato, Y. Rodange, I. Moreno, C. Iemmi, and J. Campos, “The minimum Euclidean distance principle applied to improve the modulation diffraction efficiency in digitally controlled spatial light modulators,” Opt. Express 18(10), 10581–10593 (2010).
  21. E. Eriksson, S. Keen, J. Leach, M. Goksör, and M. J. Padgett, “The effect of external forces on discrete motion within holographic optical tweezers,” Opt. Express 15(26), 18268–18274 (2007).
  22. M. Persson, D. Engström, A. Frank, J. Backsten, J. Bengtsson, and M. Goksör, “Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change,” Opt. Express 18(11), 11250–11263 (2010).
  23. D. J. McKnight, “Continuous view of dc-balanced images on a ferroelectric liquid-crystal spatial light modulator,” Opt. Lett. 19(18), 1471–1473 (1994).
  24. A. Farré, C. López-Quesada, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “Holographic optical manipulation of motor-driven membranous structures in living NG-108 cells,” Opt. Eng. 49(8), 085801 (2010).
  25. I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16(21), 16711–16722 (2008).
  26. F. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5(3), 174–178 (1998).
  27. Hamamatsu Photonics K. K., LCOS-SLM X10468 series -LC driving system- 2010
  28. K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93(6), 3167–3176 (2003).
  29. S. F. Tolić-No̸rrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).
  30. A. van der Horst and N. R. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Express 18(8), 7670–7677 (2010).
  31. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
  32. L. Nugent-Glandorf and T. T. Perkins, “Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection,” Opt. Lett. 29(22), 2611–2613 (2004).
  33. Y. Deng, J. Bechhoefer, and N. R. Forde, “Brownian motion in a modulated optical trap,” J. Opt. A, Pure Appl. Opt. 9(8), S256–S263 (2007).
  34. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited