OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21425–21431

Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures

Zeyong Wei, Yang Cao, Yuancheng Fan, Xing Yu, and Hongqiang Li  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21425-21431 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1661 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is generally believed that, in the phenomena of extraordinary optical transmission, perfect transparency only occurs at a single or a multiple of discrete frequencies. This report presents for the first time that a stacked metallic multi-layered system, being perforated with coaxial annular apertures (CAAs), can be perfectly transparent in a broad frequency range. The phenomenon arises from the coupling of guided resonance modes in CAAs among different metallic layers. The transparency bandwidth is extended to about 40% of the central frequency with only 2–3 metallic layers. Measured transmission spectra in microwave regime are in good agreement with calculations which are semi-analytically resolved by modal expansion method.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:
Diffraction and Gratings

Original Manuscript: August 16, 2011
Revised Manuscript: September 12, 2011
Manuscript Accepted: September 12, 2011
Published: October 14, 2011

Zeyong Wei, Yang Cao, Yuancheng Fan, Xing Yu, and Hongqiang Li, "Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures," Opt. Express 19, 21425-21431 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998). [CrossRef]
  3. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef] [PubMed]
  4. F. J. G. de Abajo and J. J. Saenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95, 233901 (2005). [CrossRef] [PubMed]
  5. G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett. 96, 213901 (2006). [CrossRef] [PubMed]
  6. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef] [PubMed]
  7. X. A. Xiao, W. Jinbo, Y. Sasagawa, F. Miyamaru, M. Y. Zhang, M. W. Takeda, C. Y. Qiu, W. J. Wen, and P. Sheng, “Resonant terahertz transmissions through metal hole array on silicon substrate,” Opt. Express 18, 18558–18564 (2010). [CrossRef] [PubMed]
  8. Y. M. Bahk, H. R. Park, K. J. Ahn, H. S. Kim, Y. H. Ahn, D. S. Kim, J. Bravo-Abad, L. Martin-Moreno, and F. J. Garcia-Vidal, “Anomalous Band Formation in Arrays of Terahertz Nanoresonators,” Phys. Rev. Lett. 106, 013902 (2011). [CrossRef] [PubMed]
  9. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  10. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  11. F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B: Lasers Opt. 79, 1–8 (2004). [CrossRef]
  12. W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays,” Opt. Express 13, 4406–4413 (2005). [CrossRef] [PubMed]
  13. W. J. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902 (2005). [CrossRef] [PubMed]
  14. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72, 045421 (2005). [CrossRef]
  15. W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwave-length fractal slits in a metallic plate,” Phys. Rev. B 72, 153406 (2005). [CrossRef]
  16. Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006). [CrossRef] [PubMed]
  17. Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostruct. 8, 94–101 (2010). [CrossRef]
  18. F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71, 165408–165405 (2005). [CrossRef]
  19. Y. H. Ye and J. Y. Zhang, “Enhanced light transmission through cascaded metal films perforated with periodic hole arrays,” Opt. Lett. 30, 1521–1523 (2005). [CrossRef] [PubMed]
  20. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31, 516–518 (2006). [CrossRef] [PubMed]
  21. Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B 76, 195405–195408 (2007). [CrossRef]
  22. R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polari-tons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009). [CrossRef]
  23. Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35, 2124–2126 (2010). [CrossRef] [PubMed]
  24. L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, and Y. Y. Zhu, “Enhanced optical transmission through metal-dielectric multilayer gratings,” Appl. Phys. Lett. 97, 011905 (2010). [CrossRef]
  25. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916 (1982). [CrossRef]
  26. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2, 48–51 (2000). [CrossRef]
  27. Z. Y. Wei, H. Q. Li, C. Wu, Y. Cao, J. Z. Ren, Z. H. Hang, H. Chen, D. Z. Zhang, and C. T. Chan, “Anomalous reflection from hybrid metamaterial slab,” Opt. Express 18, 12119–12126 (2010). [CrossRef] [PubMed]
  28. Z. Y. Wei, H. Q. Li, Y. Cao, C. Wu, J. Z. Ren, Z. H. Hang, H. Chen, D. Z. Zhang, and C. T. Chan, “Spatially coherent surface resonance states derived from magnetic resonances,” N. J. Phys. 12, 093020 (2010). [CrossRef]
  29. Z. Y. Wei, Y. Cao, J. Han, C. Wu, Y. C. Fan, and H. Q. Li, “Broadband negative refraction in stacked fishnet metamaterial,” Appl. Phys. Lett. 97, 141901 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited