OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21563–21574

Pulsed-laser printing of silver nanoparticles ink: control of morphological properties

Ludovic Rapp, Julie Ailuno, Anne Patricia Alloncle, and Philippe Delaporte  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21563-21574 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fine electrically-conductive patterns of silver nanoparticles ink have been laser printed using the laser-induced forward transfer (LIFT) technique. LIFT is a technique that offers the possibility of printing patterns with high spatial resolution from a wide range of materials in solid or liquid state. Influence of drying the ink film, previous to its transfer, on the printed droplet morphology is discussed. The laser pulse energy and donor-receiver substrate separation were systematically varied and their effects on the transferred droplets were analyzed. The use of an intermediate titanium dynamic release layer was also investigated and demonstrated the possibility of a better control of both the size and shape of the printed patterns. Conditions have been determined for printing flat-top droplets with sharp edges. 21 µm width silver lines with 80 nm thickness have been printed with a smooth convex profile. Electrical resistivities of the transferred patterns are only 5 times higher than the bulk silver.

© 2011 OSA

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(310.1860) Thin films : Deposition and fabrication
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Laser Microfabrication

Original Manuscript: July 26, 2011
Revised Manuscript: September 10, 2011
Manuscript Accepted: September 12, 2011
Published: October 18, 2011

Ludovic Rapp, Julie Ailuno, Anne Patricia Alloncle, and Philippe Delaporte, "Pulsed-laser printing of silver nanoparticles ink: control of morphological properties," Opt. Express 19, 21563-21574 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Ikegawa and H. Azuma, “Droplet behaviors on substrates in thin film formation using ink-jet printing,” Trans. Jpn. Soc. Mech. Eng. Ser. B 47(3), 490–496 (2004).
  2. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drop,” Nature 389(6653), 827–829 (1997). [CrossRef]
  3. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt B), 756–765 (2000). [CrossRef] [PubMed]
  4. R. D. Deegan, “Pattern formation in drying drops,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(1), 475–485 (2000). [CrossRef] [PubMed]
  5. H. H. Lee, K. S. Chou, and K. C. Huang, “Inkjet printing of nanosized silver colloids,” Nanotechnology 16(10), 2436–2441 (2005). [CrossRef] [PubMed]
  6. R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, “Jet printing flexible displays,” Mater. Today 9(4), 32–37 (2006). [CrossRef]
  7. J. Perelaer, B. J. de Gans, and U. S. Schubert, “Ink-jet printing and microwave sintering of conductive silver tracks,” Adv. Mater. (Deerfield Beach Fla.) 18(16), 2101–2104 (2006). [CrossRef]
  8. B. J. Kang and J. H. Oh, “Geometrical characterization of inkjet-printed conductive lines of nanosilver suspensions on a polymer substrate,” Thin Solid Films 518(10), 2890–2896 (2010). [CrossRef]
  9. D. Kim, S. Jeong, B. K. Park, and J. Moon, “Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions,” Appl. Phys. Lett. 89(26), 264101 (2006). [CrossRef]
  10. J. H. Park and J. H. Moon, “Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing,” Langmuir 22(8), 3506–3513 (2006). [CrossRef] [PubMed]
  11. B. J. de Gans and U. S. Schubert, “Inkjet printing of well-defined polymer dots and arrays,” Langmuir 20(18), 7789–7793 (2004). [CrossRef] [PubMed]
  12. J. Chung, S. Ko, C. P. Grigoropoulos, N. R. Bieri, C. Dockendorf, and D. Poulikakos, “Damage-free low temperature pulsed laser printing of gold nanoinks on polymer,” J. Heat Transfer 127(7), 724 (2005). [CrossRef]
  13. S. Molesa, D. R. Redinger, D. C. Huang, and V. Subramanian, “High-quality inkjet-printed multilevel Interconnects and inductive components on plastic for ultra-low-cost RFID applications,” MRS. Symp. Proc., 769, H8.3.1 (2003).
  14. A. M. J. van den Berg, A. W. M. de Laat, P. J. Smith, J. Perelaer, and U. S. Schubert, “Geometric control of inkjet printed features using a gelating polymer,” J. Mater. Chem. 17(7), 677 (2007). [CrossRef]
  15. D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir 24(5), 2224–2231 (2008). [CrossRef] [PubMed]
  16. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal-deposition from a supported metal-film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986). [CrossRef]
  17. C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(01), 23–32 (2007). [CrossRef]
  18. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007). [CrossRef]
  19. A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-Stewart, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys. 108(3), 033111 (2010). [CrossRef]
  20. K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009). [CrossRef]
  21. C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, and I. Zergioti, “Polymer/carbon nanotube composite patterns via laser induced forward transfer,” Appl. Phys. Lett. 96(4), 041104 (2010). [CrossRef]
  22. M. Colina, M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Laser-induced forward transfer of liquids: Study of the droplet ejection process,” J. Appl. Phys. 99(8), 084909 (2006). [CrossRef]
  23. J. M. Fernández-Pradas, M. Colina, P. Serra, J. Dominguez, and J. L. Morenza, “Laser-induced forward transfer of biomolecules,” Thin Solid Films 453–454, 27–30 (2004). [CrossRef]
  24. M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Film-free laser forward printing of transparent and weakly absorbing liquids,” Opt. Express 18(21), 21815–21825 (2010). [CrossRef] [PubMed]
  25. R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng. 2(1), 1–21 (2007). [CrossRef]
  26. L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009). [CrossRef]
  27. R. C. Y. Auyeung, H. Kim, A. J. Birnbaum, M. Zalalutdinov, S. A. Mathews, and A. Piqué, “Laser decal transfer of freestanding microcantilevers and microbridges,” Appl. Phys., A Mater. Sci. Process. 97(3), 513–519 (2009). [CrossRef]
  28. R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011). [CrossRef]
  29. L. Rapp, C. Cibert, A. P. Alloncle, and P. Delaporte, “Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes,” Appl. Surf. Sci. 255(10), 5439–5443 (2009). [CrossRef]
  30. P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004). [CrossRef]
  31. V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008). [CrossRef]
  32. M. Duocastella, A. Patrascioiu, V. Dinca, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Study of liquid deposition during laser printing of liquids,” Appl. Surf. Sci. 257(12), 5255–5258 (2011). [CrossRef]
  33. M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009). [CrossRef]
  34. J. Wang, R. C. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. (Deerfield Beach Fla.) 22(40), 4462–4466 (2010). [CrossRef] [PubMed]
  35. P. Serra, J. M. Fernández-Pradas, M. Colina, M. Duocastella, J. Domininguez, and J. L. Morenza, “Laser-induced forward transfer: a direct-writing technique for biosensors preparation,” J. Laser Micro/Nanoeng. 1(3), 236–242 (2006). [CrossRef]
  36. H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009). [CrossRef]
  37. M. Barret, S. Sanaur, and P. Collot, “Inkjet-printed low-voltage organic thin-film transistors: towards low-cost flexible electronics,” Mater. Res. Soc. Symp. Proc. 1003 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited