OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21575–21587

Second-order nonlinear response of composites containing aligned elongated silver nanoparticles

Israel Rocha-Mendoza, Raúl Rangel-Rojo, Luis Rodríguez-Fernández, and Alicia Oliver  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 21575-21587 (2011)
http://dx.doi.org/10.1364/OE.19.021575


View Full Text Article

Enhanced HTML    Acrobat PDF (1581 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present second-harmonic generation (SHG) measurements and simulations from a silica matrix containing randomly distributed but aligned elongated silver nanoparticles (NPs). The composites were produced by a double ion-implantation process of silver nanoparticles followed by an irradiation with Si ions. It is demonstrated that one can model the experimental results by considering the sub-micrometric composite layer as a nonlinear media containing rod NPs for which the hyperpolarizability tensor is cylindrically symmetric along the NP long axis. The second-order macroscopic susceptibility of the composite originates from the coherent summation of the hyperpolarizabilities associated to each NP. We obtain analytical expressions for the p- and s-polarized effective susceptibility tensor as a function of experimental variables, such as the fundamental beam input polarization and sample orientation, and fitting parameters relating the cylindrically shaped hyperpolarizability. In addition, coherent SHG measurements on spherical nanoparticles resulting from the first ion-implantation process are also presented showing an isotropic polar behavior for the total SHG intensity where the p-polarized SHG intensity resulted to be the main contribution.

© 2011 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(190.4400) Nonlinear optics : Nonlinear optics, materials
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 4, 2011
Revised Manuscript: September 16, 2011
Manuscript Accepted: September 17, 2011
Published: October 18, 2011

Citation
Israel Rocha-Mendoza, Raúl Rangel-Rojo, Luis Rodríguez-Fernández, and Alicia Oliver, "Second-order nonlinear response of composites containing aligned elongated silver nanoparticles," Opt. Express 19, 21575-21587 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21575


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Matsui, “Nanoparticles for Electronic Device Applications: A Brief Review,” JCEJ38(8), 535–546 (2005). [CrossRef]
  2. H. Inouye, K. Tanaka, I. Tanahashi, T. Hattori, and H. Nakatsuka, “Ultrafast Optical Switching in a Silver Nanoparticle System,” JJAP39 (1-9A), 5132–5133 (2000).
  3. J. Tominaga, C. Mihalcea, D. Buchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett.78(17), 2417–2419 (2001). [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003). [CrossRef]
  5. O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B51(24), 17591–17599 (1995). [CrossRef]
  6. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett.83(20), 4045–4048 (1999). [CrossRef]
  7. N. I. Zheludev and V. I. Emelyanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A: Pure App. Opt.6(1), 26–28 (2004).
  8. M. D. McMahon, D. Ferrara, C. T. Bowie, R. Lopez, and R. F. Haglund, “Second harmonic generation from resonantly excited arrays of gold nanoparticles,” Appl. Phys. B87(2), 259–265 (2007). [CrossRef]
  9. R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282, 1909–1912 (2009). [CrossRef]
  10. R. Rangel-Rojo, J. A. Reyes-Esqueda, C. Torres-Torres, A. Oliver, L. Rodriguez-Fernandez, A. Crespo-Sosa, J. C. Cheang-Wong, J. McCarthy, H. T. Bookey, and A. K. Kar, “Linear and nonlinear optical properties of aligned elongated silver nanoparticles embedded in silica,” in Silver Nanoparticles, David Pozo Perez eds. (In-Tech, 2010), pp. 35–62, http://www.intechopen.com/articles/show/title/linear-and-nonlinear-optical-properties-of-aligned-elongated-silver-nanoparticles-embedded-in-silica .
  11. P-F. Brevet, “Second Harmonic Generation in Nanostructures,” in Comprehensive Nanoscience and Technology, G. A. Wurtz, R.J. Pollard, and A.V. Zayats, eds. (Elsevier, 2011), pp. 351–381 [CrossRef]
  12. S. Gallet, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of nanocrystalline maghemite particles,” Chem. Phys. Lett.378 (1–2), 101–104 (2003) [CrossRef]
  13. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B, 21 (7, 1328–1347 (2004). [CrossRef]
  14. P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett.94(4), 047401 (2005). [CrossRef] [PubMed]
  15. B. S. Mendoza and W. L. Mochán, “Second harmonic surface response of a composite,” Opt. Mat.29(1), 1–5 (2006). [CrossRef]
  16. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature (London)337, 519–525 (1989). [CrossRef]
  17. X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, “Mapping molecular orientation and conformation at interfaces by surface nonlinear optics,” Phys. Rev. B59(19), 12632–12640 (1999). [CrossRef]
  18. A. Knoesen, S. Pakalnis, M. Wang, W. D. Wise, N. Lee, and C. W. Frank, “Sum-frequency spectroscopy and imaging of aligned helical polypeptides, IEEE J. Sel. Top. Quantum Electron.10(5), 1154–1163 (2004). [CrossRef]
  19. A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vi, D. Roude, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and Orientation of Amphiphilic Push-Pull Chromophores Deposited in Langmuir-Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy,” Langmuir20(19), 8165–8171 (2004). [CrossRef] [PubMed]
  20. I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum Frequency Vibrational Spectroscopy: The Molecular Origins of the Optical Second-Order Nonlinearity of Collagen,” Biophys. J.93(12),4433–4444 (2007). [CrossRef] [PubMed]
  21. S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt.14(1)(2009). [CrossRef] [PubMed]
  22. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nature Biotech.21(11), 1356–1360 (2003). [CrossRef]
  23. A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass, ” Opt. Lett.28(9), 716–718(2003). [CrossRef] [PubMed]
  24. C. Hirose, N. Akamatsu, and K. Domen, “Formulas for the Analysis of the Surface SFG Spectrum and Transformation Coefficients of Cartesian SFG Tensor Components,” Appl. Spectrosc.46(6), 1051–1072 (1992). [CrossRef]
  25. A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B74(24),245425 (2006). [CrossRef]
  26. I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J.50(4), 693–712 (1986). [CrossRef] [PubMed]
  27. P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, “Quantitative Second-Harmonic Generation Microscopy in Collagen,” Appl. Opt.42(25), 5209–5219 (2003). [CrossRef] [PubMed]
  28. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B71 (1), 165407 (2005). [CrossRef]
  29. J. C. Cheang-Wong, U. Morales, A. Oliver, L. Rodrguez-Fernndez, and J. Rickards, “MeV ion beam deformation of colloidal silica particles,” Nuc. Instrum. Meth. B242 (1–2), 452–454 (2006). [CrossRef]
  30. C.I. Valencia, E.R. Méndez, and B.S. Mendoza, “Second-harmonic generation in the scattering of light by an infinite cylinder,” J. Opt. Soc. Am. B21 (1) 36–44 (2004). [CrossRef]
  31. C.I. Valencia and E.R. Méndez, “Weak localization effects in the second-harmonic light scattered by random systems of particles,” Opt. Commun.282, 1706–1709 (2009). [CrossRef]
  32. G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B82 (23), 235403 (2015). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited