OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21605–21613

Effective plasmonic mode-size converter

Hae-Ryeong Park, Jong-Moon Park, Min-su Kim, Jung Jin Ju, Jung-Han Son, and Myung-Hyun Lee  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 21605-21613 (2011)
http://dx.doi.org/10.1364/OE.19.021605


View Full Text Article

Enhanced HTML    Acrobat PDF (975 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmonic mode-size converters (PMSCs) for long-range surface plasmon polaritons (LR-SPPs) at the wavelength of 1.55 μm are presented. The PMSC is composed of an insulator-metal-insulator waveguide (IMI-W), a laterally tapered insulator-metal-insulator-metal-insulator waveguide (LT-IMIMI-W), and an IMIMI-W in series. The mode-intensity sizes of the LR-SPPs for the IMI-W and the IMIMI-W were not only calculated using a finite element method but were also experimentally measured. The propagation losses of the IMI-W and the IMIMI-W as well as the coupling losses between them were analyzed by the cut-back method to investigate the effect of LT-IMIMI-Ws. By using the PMSC with a ∼27 ° angled LT-IMIMI-W, the coupling loss between a polarization-maintaining fiber and a 3 μm-wide IMIMI-W was reduced by ∼3.4 dB. Moreover, the resulting mode-intensity in the output of the PMSC was squeezed to ∼35% of the mode-intensity in the input IMI-W. The PMSC may be potentially useful for bridging micro- to nano-plasmonic integrated circuits.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.5470) Materials : Polymers
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: August 22, 2011
Revised Manuscript: September 22, 2011
Manuscript Accepted: September 26, 2011
Published: October 18, 2011

Citation
Hae-Ryeong Park, Jong-Moon Park, Min-su Kim, Jung Jin Ju, Jung-Han Son, and Myung-Hyun Lee, "Effective plasmonic mode-size converter," Opt. Express 19, 21605-21613 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21605


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons (Berlin, Germany: Springer-Verlag, 1988).
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005). [CrossRef] [PubMed]
  3. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev.108, 494–521 (2008). [CrossRef] [PubMed]
  4. W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.-s. Kim, J. J. Ju, and M.-H. Lee, “Enhanced Transmission in a Fiber-Coupled Au Stripe Waveguide System,” IEEE Photon. Technol. Lett.22(2), 100–102 (2010). [CrossRef]
  5. J. J. Ju, S. Park, M.-s. Kim, J.T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-Based Long-Range Surface Plasmon Polariton Waveguides for 10-Gbps Optical Signal Transmission Applications,” J. Lightwave Technol.26, 1510–1518 (2008). [CrossRef]
  6. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express13, 977–984 (2005). [CrossRef] [PubMed]
  7. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23, 413–422 (2005). [CrossRef]
  8. H.-R. Park, M.-S. Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg Gratings for Long-Range Surface Plasmon Polaritons Fabricated via Spin Coating of a Transparent Silver Ink,” IEEE Trans. Nanotechnol.10(4), 844–848 (2011). [CrossRef]
  9. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A21(12), 2442–2446 (2004). [CrossRef]
  10. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B, 73, 035407 (2006). [CrossRef]
  11. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13, 6645–6650 (2005). [CrossRef] [PubMed]
  12. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express15, 6762–6767 (2007). [CrossRef] [PubMed]
  13. J. Yoon, S. H. Song, and S. Park, “Flat-top surface plasmon-polariton modes guided by double-electrode structures,” Opt. Express15, 17151–17162 (2007). [CrossRef] [PubMed]
  14. D. Woolf, M. Loncar, and F. Capasso, “The forces from coupled surface plasmon polaritons in planar waveguides,” Opt. Express17, 19996–20011 (2009). [CrossRef] [PubMed]
  15. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient micro-scale-to-nanoscale interfacing,” Opt. Lett.31, 3288–3290 (2006). [CrossRef] [PubMed]
  16. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98, 021107 (2011). [CrossRef]
  17. ChemOptics Inc., Available: http://www.chemoptics.co.kr/
  18. E. D. Palik, Handbook of Optical Constants of Solids (Berlin, Academic, New York, 1985).
  19. MODE Solutions, Lumerical Solutions Inc., Available: http://www.lumerical.com/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited