OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21614–21619

Intensity-dependent effects on four-wave mixing based on electromagnetically induced transparency

Gang Wang, Lin Cen, Yi Qu, Yan Xue, Jin-Hui Wu, and Jin-Yue Gao  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 21614-21619 (2011)
http://dx.doi.org/10.1364/OE.19.021614


View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We extend the study on a four-wave mixing (FWM) scheme of contiuous-wave lasers in a hot rubidium vapor when the probe and coupling fields work in the electromagnetically induced transparency (EIT) regime while the pump and signal fields work in the two-photon Raman regime. Our experimental results show that the generated signal field is well contained in an EIT dip of the incident probe field as a result of efficient FWM. We find, in particular, that an optimal FWM process can only be attained when the coupling and pump fields are well matched in intensity. If the probe intensity is far beyond the EIT condition, however, the nonlinear efficiency of energy transfer from the probe field to the signal field will be greatly reduced.

© 2011 OSA

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.4180) Quantum optics : Multiphoton processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 23, 2011
Revised Manuscript: September 13, 2011
Manuscript Accepted: September 13, 2011
Published: October 18, 2011

Citation
Gang Wang, Lin Cen, Yi Qu, Yan Xue, Jin-Hui Wu, and Jin-Yue Gao, "Intensity-dependent effects on four-wave mixing based on electromagnetically induced transparency," Opt. Express 19, 21614-21619 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21614


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50, 36–42 (1997) [CrossRef]
  2. M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A64, 041801(R) (2001) [CrossRef]
  3. D. A. Braje, V. Balic̈, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A68, 041801(R) (2003) [CrossRef]
  4. H. Kang and Y. F. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett.91, 093601 (2003) [CrossRef] [PubMed]
  5. Y. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett.21, 1064–1066 (1996) [CrossRef] [PubMed]
  6. A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient nonlinear frequency conversion in an all-resonant double-Λ system,” Phys. Rev. Lett.84, 5308–5311 (2000) [CrossRef] [PubMed]
  7. D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett.93, 183601 (2004) [CrossRef] [PubMed]
  8. S. A. Babin, S. I. Kablukov, U. Hinze, E. Tiemann, and B. Wellegehausen, “Level-splitting effects in resonant four-wave mixing,” Opt. Lett.26, 81–83 (2000) [CrossRef]
  9. H. Kang, G. Hernandez, and Y. F. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A70, 061804(R) (2004) [CrossRef]
  10. Y. Wu and X. X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A70, 053818 (2004) [CrossRef]
  11. B. X. Fan, Z. L. Duan, L. Zhou, C. L. Yuan, Z. Y. Ou, and W. P. Zhang, “Generation of a single-photon source via a four-wave mixing process in a cavity,” Phys. Rev. A80, 063809 (2009) [CrossRef]
  12. R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics3, 103–106 (2009) [CrossRef]
  13. R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Low-noise amplification of a continuous-variable quantum state,” Phys. Rev. Lett.103, 010501 (2009) [CrossRef] [PubMed]
  14. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature457, 859–862 (2009) [CrossRef] [PubMed]
  15. Y. W. Lin, W. T. Liao, T. Peters, H. C. Chou, J. S. Wang, H. W. Cho, P. C. Kuan, and I. A. Yu, “Stationary light pulses in cold atomic media and without Bragg gratings,” Phys. Rev. Lett.102, 213601 (2009) [CrossRef] [PubMed]
  16. J. Otterbach, R. G. Unanyan, and M. Fleischhauer, “Confining stationary light: Dirac dynamics and Klein tunneling,” Phys. Rev. Lett.102, 063602 (2009) [CrossRef] [PubMed]
  17. J. Otterbach, J. Ruseckas, R. G. Unanyan, G. Juzeliunas, and M. Fleischhauer, “Effective magnetic fields for stationary light,” Phys. Rev. Lett.104, 033903 (2010) [CrossRef] [PubMed]
  18. G. Wang, Y. Xue, J. H. Wu, Z. H. Kang, Y. Jiang, S. S. Liu, and J. Y. Gao, “Efficient frequency conversion induced by quantum constructive interference,” Opt. Lett.35, 3778–3780 (2010) [CrossRef] [PubMed]
  19. S. Babin, U. Hinze, E. Tiemann, and B. Wellegehausen, “Continuous resonant four-wave mixing in double-Λ level configurations of Na2,” Opt. Lett.21, 1186–1188 (1996) [CrossRef] [PubMed]
  20. B. L. Lü, W. H. Burkett, and Min Xiao, “Nondegenerate four-wave mixing in a double-Λ system under the influence of coherent population trapping,” Opt. Lett.23, 804–806 (1998) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited