OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21620–21626

Microwave and terahertz wave sensing with metamaterials

Hu Tao, Emil A. Kadlec, Andrew C. Strikwerda, Kebin Fan, Willie J. Padilla, Richard D. Averitt, Eric A. Shaner, and X. Zhang  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21620-21626 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2403 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have designed, fabricated, and characterized metamaterial enhanced bimaterial cantilever pixels for far-infrared detection. Local heating due to absorption from split ring resonators (SRRs) incorporated directly onto the cantilever pixels leads to mechanical deflection which is readily detected with visible light. Highly responsive pixels have been fabricated for detection at 95 GHz and 693 GHz, demonstrating the frequency agility of our technique. We have obtained single pixel responsivities as high as 16,500 V/W and noise equivalent powers of 10−8 W/Hz1/2 with these first-generation devices.

© 2011 OSA

OCIS Codes
(040.2235) Detectors : Far infrared or terahertz
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:

Original Manuscript: August 25, 2011
Revised Manuscript: September 22, 2011
Manuscript Accepted: September 22, 2011
Published: October 18, 2011

Hu Tao, Emil A. Kadlec, Andrew C. Strikwerda, Kebin Fan, Willie J. Padilla, Richard D. Averitt, Eric A. Shaner, and X. Zhang, "Microwave and terahertz wave sensing with metamaterials," Opt. Express 19, 21620-21626 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  3. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009). [CrossRef] [PubMed]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  6. H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron.17(1), 92–101 (2011). [CrossRef]
  7. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater.1(1), 26–33 (2002). [CrossRef] [PubMed]
  8. K. Sakai, Terahertz Optoelectronics (Springer-Verlag, 2005).
  9. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev.5(1), 124–166 (2011). [CrossRef]
  10. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  11. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  12. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  13. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010). [CrossRef]
  14. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  15. F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron.34(5), 278–347 (2010). [CrossRef]
  16. F. Sizov, V. Reva, A. Golenkov, and V. Zabudsky, “Uncooled detectors challenges for THz/sub THz arrays imaging,” J. Infrared Millim. Terahertz Waves32(10), 1192–1206 (2011). [CrossRef]
  17. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
  18. B. Li, “Design and simulation of an uncooled doulbe-cantilever microbolometer with the potential for ~mK NETD,” Sens. Actuators A Phys.112(2-3), 351–359 (2004). [CrossRef]
  19. K. C. Liddiard, “Thin-film resistance bolometer IR detectors,” Infrared Phys.24(1), 57–64 (1984). [CrossRef]
  20. Q. Zhang, Z. Miao, Z. Guo, F. Dong, Z. Xiong, X. Wu, D. Chen, C. Li, and B. Jiao, “Optical readout uncooled infrared imaging detector using knife-edge filter operation,” Optoelectron. Lett.3(2), 119–122 (2007). [CrossRef]
  21. Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical Uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst.11(2), 136–146 (2002). [CrossRef]
  22. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited