OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21680–21691

Dual-core photonic crystal fibers for tunable polarization mode dispersion compensation

D. C. Zografopoulos, C. Vázquez, E. E. Kriezis, and T. V. Yioultsis  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 21680-21691 (2011)
http://dx.doi.org/10.1364/OE.19.021680


View Full Text Article

Enhanced HTML    Acrobat PDF (3029 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel type of dual concentric core photonic crystal fiber (PCF) is proposed and theoretically analyzed, aiming at the design of tunable dispersive fiber elements for polarization-mode-dispersion (PMD) compensation. The adjustment of the fiber’s geometrical birefringence through the proper selection of structural parameters leads to very high values of differential group-delay (DGD). Moreover, the value of DGD can be dynamically tuned by infiltrating the outer core capillaries of the PCF with an optical liquid, which allows for the thermal control of its refractive index. Such fibers are envisaged as tunable dispersive fiber elements for PMD compensation or emulation modules.

© 2011 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(230.2035) Optical devices : Dispersion compensation devices
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 20, 2011
Revised Manuscript: September 16, 2011
Manuscript Accepted: September 19, 2011
Published: October 19, 2011

Citation
D. C. Zografopoulos, C. Vázquez, E. E. Kriezis, and T. V. Yioultsis, "Dual-core photonic crystal fibers for tunable polarization mode dispersion compensation," Opt. Express 19, 21680-21691 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21680


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24, 4729–4749 (2006). [CrossRef]
  2. P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber Commun. Rep.2, 435–461 (2005). [CrossRef]
  3. X. Zhao, G. Zhou, S. Li, Z. Liu, D. Wei, Z. Hou, and L. Hou, “Photonic crystal fiber for dispersion compensation,” Appl. Opt.47, 5190–5196 (2008). [CrossRef] [PubMed]
  4. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett.8, 1510–1512 (1996). [CrossRef]
  5. F. Gérôme, J.-L. Auguste, J. Maury, J.-M. Blondy, and J. Marcou, “Theoretical and experimental analysis of a chromatic dispersion compensating module using a dual concentric core fiber,” J. Lightwave Technol.24, 442–448 (2006). [CrossRef]
  6. A. Huttunen and P. Törmä, “Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area,” Opt. Express13, 627–635 (2005). [CrossRef] [PubMed]
  7. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, “Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Express14, 893–900 (2006). [CrossRef] [PubMed]
  8. D. C. Zografopoulos and E. E. Kriezis, “Tunable optical fiber polarization elements based on long-period gratings inscribed in birefringent microstructured fibers,” J. Opt. Soc. Am. B25, 111–118 (2008). [CrossRef]
  9. C.-P. Yu, J.-H. Liou, S.-S. Huang, and H.-C. Chang, “Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation,” Opt. Express16, 4443–4451 (2008). [CrossRef] [PubMed]
  10. R. DeSalvo, A. G. Wilson, J. Rollman, D. F. Schneider, L. M. Lunardi, S. Lumish, N. Agrawal, A. H. Steinbach, W. Baun, T. Wall, R. Ben-Michael, M. A. Itzler, A. Fejzuli, R. A. Chipman, G. T. Kiehne, and K. M. Kissa, “Advanced components and sub-system solutions for 40Gb/s transmission,” J. Lightwave Technol.20, 2154–2181 (2002). [CrossRef]
  11. A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun.18, 191–210 (2009). [CrossRef]
  12. H. Bülow and S. Lanne, “PMD compensation techniques,” J. Opt. Fiber Commun. Rep.1, 283–303 (2004). [CrossRef]
  13. X. Zhang, Y. Xia, Y. Huang, and X. Ren, “A novel tunable PMD compensation using linearly chirped fiber Bragg gratings,” Opt. Commun.214, 123–127 (2002). [CrossRef]
  14. L. Yan, M. C. Hauer, Y. Shi, X. S. Yao, P. Ebrahimi, Y. Wang, A. E. Willner, and W. L. Kath, “Polarization-mode-dispersion emulator using variable differential-group-delay (DGD) elements and its use for experimental importance sampling,” J. Lightwave Technol.22, 1051–1058 (2004). [CrossRef]
  15. N. M. Litchinitser, M. Sumetsky, and P. S. Westbrook, “Fiber-based tunable dispersion compensation,” J. Opt. Fiber Commun. Rep.4, 41–85 (2007). [CrossRef]
  16. A. Pitilakis, D. C. Zografopoulos, and E. E. Kriezis, “In-line polarization controller based on liquid-crystal photonic crystal fibers,” J. Lightwave Technol.29, 2560–2569 (2011). [CrossRef]
  17. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett.85, 5182–5184 (2004). [CrossRef]
  18. K. Nielsen, D. Noordegraaf, T. Sörensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt.7, L13–L20 (2005). [CrossRef]
  19. J. Du, Y. Liu, Z. Wang, Q. Shi, Z. Liu, Q. Fang, J. Li, G. Kai, and X. Dong, “Two accesses to achieve air-core’s selective filling of a photonic bandgap fiber,” Proc. SPIE6781, 678111 (2007). [CrossRef]
  20. J. Ju, H. F. Xuan, W. Jin, S. Liu, and H. L. Ho, “Selective opening of airholes in photonic crystal fiber,” Opt. Lett.35, 3886–3888 (2010). [CrossRef] [PubMed]
  21. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B19, 2322–2330 (2002). [CrossRef]
  22. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B19, 2331–2340 (2002). [CrossRef]
  23. Cargille Labs, AAA series of refractive index liquids, http://www.cargille.com .
  24. T. R. Woliński, P. Lesiak, K. Szaniawska, A. W. Domański, and J. Wójcik, “Polarization mode dispersion in birefringent microstructured fibers,” Opt. Appl.34, 541–549 (2004).
  25. W. Wadsworth, A. Witkowska, S. Leon-Saval, and T. Birks, “Hole inflation and tapering of stock photonic crystal fibers,” Opt. Express13, 6541–6549 (2005). [CrossRef] [PubMed]
  26. Fibercore Ltd., FiberCore SM600 & SM1500, http://www.fibercore.com .
  27. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol.18, 1418–1420 (2000). [CrossRef]
  28. Q. Yu and A. W. Willner, “Performance limits of first-order PMD compensators using fixed and variable DGD elements,” IEEE Photon. Technol. Lett.14, 304–306 (2002). [CrossRef]
  29. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett.33, 2215–2217 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited