OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21748–21753

Effect of radiation damping on the spectral response of plasmonic components

Mikhail A. Kats, Nanfang Yu, Patrice Genevet, Zeno Gaburro, and Federico Capasso  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21748-21753 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (694 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore the relationship between the near-field enhancement, absorption, and scattering spectra of localized plasmonic elements. A simple oscillator model including both internal and radiative damping is developed, and is shown to accurately capture the near- and far-field spectral features of linear optical antennas, including their phase response. At wavelengths away from the interband transitions of the metal, we expect the absorption of a plasmonic element to be red-shifted relative to the scattering, and the near-field to be red-shifted relative to both.

© 2011 OSA

OCIS Codes
(230.4910) Optical devices : Oscillators
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: September 20, 2011
Revised Manuscript: October 2, 2011
Manuscript Accepted: October 2, 2011
Published: October 19, 2011

Mikhail A. Kats, Nanfang Yu, Patrice Genevet, Zeno Gaburro, and Federico Capasso, "Effect of radiation damping on the spectral response of plasmonic components," Opt. Express 19, 21748-21753 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]
  2. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–63 (2007). [CrossRef] [PubMed]
  3. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2, 3 (2008).
  4. E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1448–1461 (2008). [CrossRef]
  5. S. A. Maier, Plasmonics: fundamentals and applications (Springer-Verlag, New York, 2007)
  6. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
  7. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2006). [PubMed]
  8. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997). [PubMed]
  9. M. Osawa, “Surface-enhanced infrared absorption,” Top. Appl. Phys. 81, 163–187 (2001).
  10. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106, 46 (2009).
  11. J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010). [CrossRef] [PubMed]
  12. P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10(12), 4880–4883 (2010). [CrossRef] [PubMed]
  13. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 23 (2003).
  14. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010). [CrossRef]
  15. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011). [CrossRef] [PubMed]
  16. N. Yu and F. Capasso, “Wavefront engineering for mid-infrared and terahertz quantum cascade lasers,” J. Opt. Soc. Am. B 27(11), B18 (2010). [CrossRef]
  17. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science Express 10, 1210713 (2011).
  18. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  19. N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004). [CrossRef]
  20. S. Bruzzone, M. Malvaldi, G. P. Arrighini, and C. Guidotti, “Light scattering by gold nanoparticles: role of simple dielectric models,” J. Phys. Chem. B 108(30), 10853–10858 (2004). [CrossRef]
  21. A.-S. Grimault, A. Vial, and M. Lamy de la Chapelle, “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,” Appl. Phys. B 84(1-2), 111–115 (2006). [CrossRef]
  22. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008). [CrossRef] [PubMed]
  23. B. M. Ross and L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34(7), 896 (2009). [CrossRef] [PubMed]
  24. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011). [CrossRef] [PubMed]
  25. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef] [PubMed]
  26. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef] [PubMed]
  27. D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Benjamin Cummings, 1999)
  28. W. Heitler, The Quantum Theory of Radiation, 3rd ed. (Oxford Univ. Press, London, 1954)
  29. J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express 18(5), 4557–4563 (2010). [CrossRef] [PubMed]
  30. N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007). [CrossRef]
  31. Our FDTD simulations were performed with Lumerical FDTD Solutions 6.5.
  32. E. D. Palik, Handbook of Optical Constants of Solids Vol. 3, (Academic Press, 1997)
  33. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson, 1976).
  34. H. M. van Driel, “Optical effective mass of high density carriers in silicon,” Appl. Phys. Lett. 44(6), 617 (1984). [CrossRef]
  35. M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101(19), 3706–3712 (1997). [CrossRef]
  36. S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75(8), 1063 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited