OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21809–21817

One stage pulse compression at 1554nm through highly anomalous dispersive photonic crystal fiber

Maggie Yihong Chen, Harish Subbaraman, and Ray T. Chen  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21809-21817 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2679 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the pulse compression at 1554 nm using one stage of highly anomalous dispersive photonic crystal fibers with a dispersion value of 600 ps/nm∙km. A 1.64 ps pulse is compressed down to 0.357 ps with a compression factor of 4.6, which agrees reasonably well with the simulation value of 6.1. The compressor is better suited for high energy ultra-short pulse compression than conventional low dispersive single mode fibers.

© 2011 OSA

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.5520) Ultrafast optics : Pulse compression
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Ultrafast Optics

Original Manuscript: August 11, 2011
Revised Manuscript: September 27, 2011
Manuscript Accepted: September 27, 2011
Published: October 20, 2011

Maggie Yihong Chen, Harish Subbaraman, and Ray T. Chen, "One stage pulse compression at 1554nm through highly anomalous dispersive photonic crystal fiber," Opt. Express 19, 21809-21817 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Akhmediev, N. V. Mitzkevich, and F. V. Lukin, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27(3), 849–857 (1991). [CrossRef]
  2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental-observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980). [CrossRef]
  3. G. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  4. M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13(18), 6848–6855 (2005). [CrossRef] [PubMed]
  5. B. Kibler, R. Fischer, R. A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimized one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007). [CrossRef]
  6. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13(16), 6153–6159 (2005). [CrossRef] [PubMed]
  7. A. A. Amorim, M. V. Tognetti, P. Oliveira, J. L. Silva, L. M. Bernardo, F. X. Kärtner, and H. M. Crespo, “Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers,” Opt. Lett. 34(24), 3851–3853 (2009). [CrossRef] [PubMed]
  8. L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15(4), 540–542 (2003). [CrossRef]
  9. J. A. West, N. Venkataramam, C. M. Smith, and M. T. Gallagher, “Photonic crystal fibers,” in Proc. 27th Eur. Conf. on Opt. Comm. (2001), Vol. 4, pp. 582 –585.
  10. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8(11), 1510–1512 (1996). [CrossRef]
  11. J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25(2), 96–98 (2000). [CrossRef] [PubMed]
  12. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett. 24(5), 276–278 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited