OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21832–21841

Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor

Somayyeh Rahimi, Amir Hosseini, Xiaochuan Xu, Harish Subbaraman, and Ray T. Chen  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 21832-21841 (2011)
http://dx.doi.org/10.1364/OE.19.021832


View Full Text Article

Enhanced HTML    Acrobat PDF (1157 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Group-index independent coupling to a silicon-on-insulator (SOI) based band-engineered photonic crystal (PCW) waveguide is presented. A single hole size is used for designing both the PCW coupler and the band-engineered PCW to improve fabrication yield. Efficiency of several types of PCW couplers is numerically investigated. An on-chip integrated Fourier transform spectral interferometry device is used to experimentally determine the group-index while excluding the effect of the couplers. A low-loss, low-dispersion slow light transmission over 18nm bandwidth under the silica light line with a group index of 26.5 is demonstrated, that corresponds to the largest slow-down factor of 0.31 ever demonstrated for a PCW with oxide bottom cladding.

© 2011 OSA

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: August 22, 2011
Revised Manuscript: October 4, 2011
Manuscript Accepted: October 6, 2011
Published: October 20, 2011

Citation
Somayyeh Rahimi, Amir Hosseini, Xiaochuan Xu, Harish Subbaraman, and Ray T. Chen, "Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor," Opt. Express 19, 21832-21841 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21832


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Soljačić, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B19(9), 2052–2059 (2002). [CrossRef]
  2. R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two dimensional photonic crystals,” Phys. Rev. B77(11), 115124 (2008). [CrossRef]
  3. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87(22), 221105 (2005). [CrossRef]
  4. W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett.36(6), 984–986 (2011). [CrossRef] [PubMed]
  5. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett.87(25), 253902 (2001). [CrossRef] [PubMed]
  6. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express19(14), 13000–13007 (2011). [CrossRef] [PubMed]
  7. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett.85(21), 4866–4868 (2004). [CrossRef]
  8. J. M. Brosi, J. Leuthold, and W. G. Freude, “Microwave-frequency experiments validate optical simulation tools and demonstrate novel dispersion-tailored photonic crystal waveguides,” J. Lightwave Technol.25(9), 2502–2510 (2007). [CrossRef]
  9. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express15(1), 219–226 (2007). [CrossRef] [PubMed]
  10. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express14(20), 9444–9450 (2006). [CrossRef] [PubMed]
  11. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett.32(20), 2981–2983 (2007). [CrossRef] [PubMed]
  12. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16(9), 6227–6232 (2008). [CrossRef] [PubMed]
  13. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett.34(7), 1072–1074 (2009). [CrossRef] [PubMed]
  14. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express13(23), 9398–9408 (2005). [CrossRef] [PubMed]
  15. Y.-S. Chen, Y. Zhao, A. Hosseini, D. Kwong, W. Jiang, S. R. Bank, E. Tutuc, and R. T. Chen, “Delay time enhanced flat band photonic crystal waveguides with capsule-shaped holes on silicon nanomembrane,” IEEE J. Sel. Top. Quantum Electron.15(5), 1510–1514 (2009). [CrossRef]
  16. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line defect waveguides of silicon on insulator photonic crystal slabs,” IEEE J. Quantum Electron.38(7), 736 (2002). [CrossRef]
  17. M. G. Scullion, T. F. Krauss, and A. Di Falco, “High efficiency interference for coupling into slotted photonic crystal waveguide,” IEEE Photonics J.3(2), 203–208 (2011). [CrossRef]
  18. R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express18(16), 16309–16319 (2010). [CrossRef] [PubMed]
  19. A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett.98(3), 031107 (2011). [CrossRef]
  20. A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurements of the group index of photonic crystal waveguide via Fourier transform spectral interferometry,” Appl. Phys. Lett.90(26), 261107 (2007). [CrossRef]
  21. S. A. Schulz, L. O'Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010). [CrossRef]
  22. J. Nocedal and S. Wright, Numerical Optimization (Springer-Verlag, 1999).
  23. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6), 066608 (2002). [CrossRef] [PubMed]
  24. P. Pottier, M. Gnan, and R. M. De La Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express15(11), 6569–6575 (2007). [CrossRef] [PubMed]
  25. C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W.-C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett.97(18), 183302 (2010). [CrossRef]
  26. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett.32(18), 2638–2640 (2007). [CrossRef] [PubMed]
  27. N. Ozaki, Y. Kitagawa, Y. Takata, N. Ikeda, Y. Watanabe, A. Mizutani, Y. Sugimoto, and K. Asakawa, “High transmission recovery of slow light in a photonic crystal waveguide using a hetero groupvelocity waveguide,” Opt. Express15(13), 7974–7983 (2007). [CrossRef] [PubMed]
  28. C. Martijn de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express17(20), 17338–17343 (2009). [CrossRef] [PubMed]
  29. Y. Cui, K. Liu, D. L. MacFarlane, and J. B. Lee, “Thermo-optically tunable silicon photonic crystal light modulator,” Opt. Lett.35(21), 3613–3615 (2010). [CrossRef] [PubMed]
  30. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett.31(1), 50–52 (2006). [CrossRef] [PubMed]
  31. R. Jacobsen, A. Lavrinenko, L. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J. Fage-Pedersen, and P. Borel, “Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides,” Opt. Express13(20), 7861–7871 (2005). [CrossRef] [PubMed]
  32. W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited