OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21904–21918

Integrated waveguide-DBR microcavity opto-mechanical system

Marcel W. Pruessner, Todd H. Stievater, Jacob B. Khurgin, and William S. Rabinovich  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21904-21918 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (5151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cavity opto-mechanics exploits optical forces acting on mechanical structures. Many opto-mechanics demonstrations either require extensive alignment of optical components for probing and measurement, which limits the number of opto-mechanical devices on-chip; or the approaches limit the ability to control the opto-mechanical parameters independently. In this work, we propose an opto-mechanical architecture incorporating a waveguide-DBR microcavity coupled to an in-plane micro-bridge resonator, enabling large-scale integration on-chip with the ability to individually tune the optical and mechanical designs. We experimentally characterize our device and demonstrate mechanical resonance damping and amplification, including the onset of coherent oscillations. The resulting collapse of the resonance linewidth implies a strong increase in effective mechanical quality-factor, which is of interest for high-resolution sensing.

© 2011 OSA

OCIS Codes
(200.4880) Optics in computing : Optomechanics
(140.3945) Lasers and laser optics : Microcavities
(230.4685) Optical devices : Optical microelectromechanical devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Optical Devices

Original Manuscript: June 20, 2011
Revised Manuscript: September 6, 2011
Manuscript Accepted: September 30, 2011
Published: October 21, 2011

Marcel W. Pruessner, Todd H. Stievater, Jacob B. Khurgin, and William S. Rabinovich, "Integrated waveguide-DBR microcavity opto-mechanical system," Opt. Express 19, 21904-21918 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008). [CrossRef] [PubMed]
  2. I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009). [CrossRef]
  3. F. Marquardt and S. Girvin, “Optomechanics,” Physics 2, 40 (2009). [CrossRef]
  4. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008). [CrossRef] [PubMed]
  5. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009). [CrossRef]
  6. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009). [CrossRef] [PubMed]
  7. C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004). [CrossRef] [PubMed]
  8. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006). [CrossRef] [PubMed]
  9. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006). [CrossRef] [PubMed]
  10. M. Zalalutdinov, A. Zehnder, A. Olkhovets, S. Turner, L. Sekaric, B. Ilic, D. Czaplewski, J. M. Parpia, and H. G. Craighead, “Autoparametric optical drive for micromechanical oscillators,” Appl. Phys. Lett. 79(5), 695–697 (2001). [CrossRef]
  11. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005). [CrossRef] [PubMed]
  12. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-14-5293 . [PubMed]
  13. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005). [CrossRef] [PubMed]
  14. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006). [CrossRef] [PubMed]
  15. S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold microoptomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5(7), 485–488 (2009). [CrossRef]
  16. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]
  17. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009). [CrossRef] [PubMed]
  18. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105(26), 263903 (2010). [CrossRef] [PubMed]
  19. K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11(2), 791–797 (2011). [CrossRef] [PubMed]
  20. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “In-plane microelectromechanical resonator with integrated Fabry–Pérot cavity,” Appl. Phys. Lett. 92(8), 081101 (2008). [CrossRef]
  21. P. Yeh, Optical Waves in Layered Media, B.E. Saleh, ed., (Wiley, 1998), Chapter 5.
  22. C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78(3), 035309 (2008). [CrossRef]
  23. U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8(5), 647–648 (1996). [CrossRef]
  24. M. W. Pruessner, J. B. Khurgin, T. H. Stievater, and W. S. Rabinovich, “an optically pumped phonon laser in a silicon micromechanical oscillator,” Conf. on Lasers and Electro-Optics (CLEO), May 1–6, 2011, Baltimore, MD. Technical Digest (CD) (Optical Society of America, 2011), paper QWI3. http://www.opticsinfobase.org/abstract.cfm?URI=QELS-2011-QWI3 .
  25. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76(6), 061101 (2005). [CrossRef]
  26. N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75(7), 2229–2253 (2004). [CrossRef]
  27. T. H. Stievater, W. S. Rabinovich, N. A. Papanicolaou, R. Bass, and J. B. Boos, “Measured limits of detection based on thermal-mechanical frequency noise in micromechanical sensors,” Appl. Phys. Lett. 90(5), 051114 (2007). [CrossRef]
  28. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, W. S. Rabinovich, J. L. Stepnowski, and R. A. McGill, “Waveguide micro-opto-electro-mechanical resonant chemical sensors,” Lab Chip 10(6), 762–768 (2010). [CrossRef] [PubMed]
  29. B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, and P. Neuzil, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys. 95(7), 3694–3703 (2004). [CrossRef]
  30. U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators A Phys. 145–146, 283–290 (2008). [CrossRef]
  31. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. Cole, S. Rashleigh, and R. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18(4), 626–665 (1982). [CrossRef]
  32. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force,” Meas. Sci. Technol. 20(3), 034023 (2009). [CrossRef]
  33. F. Keplinger, S. Kvasnica, A. Jachimowicz, F. Kohl, J. Steurer, and H. Hauser, “Lorentz force based magnetic field sensor with optical readout,” Sens. Actuators A Phys. 110(1-3), 112–118 (2004). [CrossRef]
  34. D. F. Edwards, Handbook of Optical Constants of Solids (Academic Press, 1985), Chapter: Silicon (Si), p. 547.
  35. http://www.ioffe.ru/SVA/NSM/Semicond/Si/mechanic.html (accessed on November 23, 2010).
  36. F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, “Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry,” J. Vac. Sci. Technol. B 10(1), 19–26 (1992). [CrossRef]
  37. M. Bao, H. Yang, H. Yin, and Y. Sun, “Energy transfer model for squeeze-film air damping in low vacuum,” J. Micromech. Microeng. 12(3), 341–346 (2002). [CrossRef]
  38. C. Gui, R. Legtenberg, M. Elwenspoek, and J. H. Fluitman, “Q-factor dependence of one-port encapsulated polysilicon resonator on reactive sealing pressure,” J. Micromech. Microeng. 5(2), 183–185 (1995). [CrossRef]
  39. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Rabinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities,” Opt. Express 15(12), 7557–7563 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7557 . [CrossRef] [PubMed]
  40. T. H. Stievater, W. S. Rabinovich, H. S. Newman, R. Mahon, P. G. Goetz, J. L. Ebel, and D. J. McGee, “Measurement of thermal-mechanical noise in microelectromechanical systems,” Appl. Phys. Lett. 81(10), 1779–1781 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited