OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22322–22336

Response theory of optical forces in two-port photonics systems: a simplified framework for examining conservative and non-conservative forces

Zheng Wang and Peter Rakich  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 22322-22336 (2011)
http://dx.doi.org/10.1364/OE.19.022322


View Full Text Article

Acrobat PDF (1988 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We extend the response theory of optical forces to general electromagnetic systems which can be treated as multi-port systems with multiple mechanical degrees of freedom. We demonstrate a fundamental link between the scattering properties of an optical system to its ability to produce conservative or non-conservative optical forces. Through the exploration of two nontrivial two-port systems, including an analytical Fabry-Perot interferometer and a more complex particle-in-a-waveguide structure, we show perfect agreement between the response theory and numerical first-principle calculations. We show that new insights into the origins of optical forces from the response theory provide clear means of understanding conservative and non-conservative forces in a regime where traditional gradient force picture fails.

© 2011 OSA

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(140.7010) Lasers and laser optics : Laser trapping
(200.4880) Optics in computing : Optomechanics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optomechanics

History
Original Manuscript: August 23, 2011
Revised Manuscript: October 13, 2011
Manuscript Accepted: October 14, 2011
Published: October 24, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics
Collective Phenomena (2011) Optics Express

Citation
Zheng Wang and Peter Rakich, "Response theory of optical forces in two-port photonics systems: a simplified framework for examining conservative and non-conservative forces," Opt. Express 19, 22322-22336 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-22322


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron.6(6), 841–856 (2000). [CrossRef]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003). [CrossRef] [PubMed]
  3. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science321(5893), 1172–1176 (2008). [CrossRef] [PubMed]
  4. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010). [CrossRef]
  5. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics5(6), 335–342 (2011). [CrossRef]
  6. M. L. Povinelli, S. G. Johnson, M. Lonèar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators,” Opt. Express13(20), 8286–8295 (2005). [CrossRef] [PubMed]
  7. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett.30(22), 3042–3044 (2005). [CrossRef] [PubMed]
  8. P. T. Rakich, M. A. Popović, M. Soljačić, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics1(11), 658–665 (2007). [CrossRef]
  9. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature456(7221), 480–484 (2008). [CrossRef] [PubMed]
  10. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009). [CrossRef]
  11. M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol.4(6), 377–382 (2009). [CrossRef] [PubMed]
  12. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103(10), 103601 (2009). [CrossRef] [PubMed]
  13. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462(7273), 633–636 (2009). [CrossRef] [PubMed]
  14. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462(7269), 78–82 (2009). [CrossRef] [PubMed]
  15. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics4(4), 236–242 (2010). [CrossRef]
  16. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics1(7), 416–422 (2007). [CrossRef]
  17. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009). [CrossRef] [PubMed]
  18. L. Novotny, “Forces in Optical Near-Fields,” in Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001), Vol. 141, pp. 123–141.
  19. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett.94(22), 223902 (2005). [CrossRef] [PubMed]
  20. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett.95(3), 033901 (2005). [CrossRef] [PubMed]
  21. P. Penfield and H. A. Haus, Electrodynamics of Moving Media (MIT Press, 1967).
  22. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  23. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton.2(1), 021875 (2008). [CrossRef]
  24. P. T. Rakich, M. A. Popović, and Z. Wang, “General treatment of optical forces and potentials in mechanically variable photonic systems,” Opt. Express17(20), 18116–18135 (2009). [CrossRef] [PubMed]
  25. Y. Roichman, B. Sun, A. Stolarski, and D. G. Grier, “Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: the fountain of probability,” Phys. Rev. Lett.101(12), 128301 (2008). [CrossRef] [PubMed]
  26. B. Sun, J. Lin, E. Darby, A. Y. Grosberg, and D. G. Grier, “Brownian vortexes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(1), 010401 (2009). [CrossRef] [PubMed]
  27. E. R. Shanblatt and D. G. Grier, “Extended and knotted optical traps in three dimensions,” Opt. Express19(7), 5833–5838 (2011). [CrossRef] [PubMed]
  28. L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984), p. 460.
  29. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field,” Opt. Express12(22), 5375–5401 (2004). [CrossRef] [PubMed]
  30. M. Mansuripur, “Radiation pressure and the linear momentum of light in dispersive dielectric media,” Opt. Express13(6), 2245–2250 (2005). [CrossRef] [PubMed]
  31. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Opt. Express13(7), 2321–2336 (2005). [CrossRef] [PubMed]
  32. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), p. xii, 402.
  33. D. M. Pozar, Microwave Engineering, 2nd ed. (John Wiley, 1998).
  34. H. A. Haus, “Mirrors and Interferometers,” in Waves and Fields in Optoelectronics (Prentice-Hall, 1984), pp. 55–80.
  35. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992). [CrossRef] [PubMed]
  36. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett.100(1), 013602 (2008). [CrossRef] [PubMed]
  37. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15(25), 17172–17205 (2007). [CrossRef] [PubMed]
  38. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002). [CrossRef]
  39. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  40. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A.94(10), 4853–4860 (1997). [CrossRef] [PubMed]
  41. W. Greiner, Classical Mechanics, 2nd ed. (Springer, 2009).
  42. A. Taflove and S. C. Hagness, Computational electrodynamics, 3rd ed. (Artech House, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited