OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22402–22409

Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode

Atsushi Ishizawa, Tadashi Nishikawa, Akira Mizutori, Hidehiko Takara, Hidetoshi Nakano, Tetsuomi Sogawa, Atsushi Takada, and Masafumi Koga  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 22402-22409 (2011)
http://dx.doi.org/10.1364/OE.19.022402


View Full Text Article

Enhanced HTML    Acrobat PDF (6265 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first demonstration of continuous-wave laser diode based 100-fs-class pulse lasers operating at a gigahertz repetition rate without a mode-locking technique. We describe the performance of a 1-W, 120-fs optical pulse train at 1 GHz and a 1-W, 80-fs optical pulse train at 250 MHz by using a simple configuration. Sub-100-fs pulse durations are achieved by using a progressive expansion of the spectrum in the self-phase modulation process in an erbium-doped fibre amplifier. Our scheme can achieve continuously tunable repetition rate in the range of ±20%, and develop powerful tools for use in nanomechanical systems and nanobiotechnology.

© 2011 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(140.3510) Lasers and laser optics : Lasers, fiber
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.5520) Ultrafast optics : Pulse compression
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Ultrafast Optics

History
Original Manuscript: August 22, 2011
Revised Manuscript: October 5, 2011
Manuscript Accepted: October 5, 2011
Published: October 24, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Atsushi Ishizawa, Tadashi Nishikawa, Akira Mizutori, Hidehiko Takara, Hidetoshi Nakano, Tetsuomi Sogawa, Atsushi Takada, and Masafumi Koga, "Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode," Opt. Express 19, 22402-22409 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22402


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Bruchhausen, R. Gebs, F. Hudert, D. Issenmann, G. Klatt, A. Bartels, O. Schecker, R. Waitz, A. Erbe, E. Scheer, J.-R. Huntzinger, A. Mlayah, and T. Dekorsy, “Subharmonic resonant optical excitation of confined acoustic modes in a free-standing semiconductor membrane at GHz frequencies with a high-repetition-rate femtosecond laser,” Phys. Rev. Lett.106(7), 077401 (2011). [CrossRef] [PubMed]
  2. A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1 GHz) repetition rate compact femtosecond laser: a powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102(1), 014701 (2007). [CrossRef]
  3. S. W. Chu, T. M. Liu, C. K. Sun, C. Y. Lin, and H. J. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express11(8), 933–938 (2003). [CrossRef] [PubMed]
  4. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007). [CrossRef] [PubMed]
  5. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009). [CrossRef] [PubMed]
  6. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett.46(19), 1343–1344 (2010). [CrossRef]
  7. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm−1,” Nature452(7187), 610–612 (2008). [CrossRef] [PubMed]
  8. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008). [CrossRef] [PubMed]
  9. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007). [CrossRef]
  10. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron.24(2), 382–387 (1988). [CrossRef]
  11. T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron.2(3), 643–649 (1996). [CrossRef]
  12. M. Hanna, P. A. Lacourt, S. Poinsot, and J. M. Dudley, “Optical pulse generation using soliton-assisted time-lens compression,” Opt. Express13(5), 1743–1748 (2005). [CrossRef] [PubMed]
  13. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, “Broadband wavelength-tunable ultrashort pulse source using a Mach-Zehnder modulator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett.34(15), 2297–2299 (2009). [CrossRef] [PubMed]
  14. Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” Electron. Lett.41(19), 1048–1050 (2005). [CrossRef]
  15. T. Inoue, N. Kumano, M. Takahashi, T. Yagi, and M. Sakano, “Generation of 80-nm wavelength-tunable 100-fs pulse based on comblike profiled fiber comprised of HNLF and zero dispersion-slope NZDSF,” J. Lightwave Technol.25(1), 165–169 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited