OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22423–22436

Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model

Michael R. Gleeson, Jinxin Guo, and John T. Sheridan  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 22423-22436 (2011)
http://dx.doi.org/10.1364/OE.19.022423


View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An understanding of the photochemical and photo-physical processes, which occur during photopolymerization is of extreme importance when attempting to improve a photopolymer material’s performance for a given application. Recent work carried out on the modelling of the mechanisms which occur in photopolymers during- and post-exposure, has led to the development of a tool, which can be used to predict the behaviour of these materials under a wide range of conditions. In this paper, we explore this Non-local Photo-polymerisation Driven Diffusion model, illustrating some of the useful trends, which the model predicts and we analyse their implications on the improvement of photopolymer material performance.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.7330) Diffraction and gratings : Volume gratings
(090.2890) Holography : Holographic optical elements
(090.2900) Holography : Optical storage materials
(160.5470) Materials : Polymers
(160.5335) Materials : Photosensitive materials

ToC Category:
Holography

History
Original Manuscript: June 20, 2011
Revised Manuscript: July 15, 2011
Manuscript Accepted: July 17, 2011
Published: October 24, 2011

Citation
Michael R. Gleeson, Jinxin Guo, and John T. Sheridan, "Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model," Opt. Express 19, 22423-22436 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22423


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B26(9), 1736–1745 (2009). [CrossRef]
  2. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental Validation,” J. Opt. Soc. Am. B26(9), 1746–1754 (2009). [CrossRef]
  3. M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-Local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary Radical Generation and Inhibition,” J. Opt. Soc. Am. B27(9), 1804–1812 (2010). [CrossRef]
  4. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromol.43(22), 9462–9472 (2010). [CrossRef]
  5. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt.6(2), 225–245 (1997). [CrossRef]
  6. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A17(6), 1108–1114 (2000). [CrossRef] [PubMed]
  7. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B19(4), 621–629 (2002). [CrossRef]
  8. T. Fäcke, F. Bruder, M. Weiser, T. Rölle, and D. Hönel, U.S. Patent No, US 2011/0065827 A1, (2011).
  9. C. Ye and R. R. McLeod, “GRIN lens and lens array fabrication with diffusion-driven photopolymer,” Opt. Lett.33(22), 2575–2577 (2008). [CrossRef] [PubMed]
  10. A. B. Villafranca and K. Saravanamuttu, “Diffraction rings due to spatial self-phase modulation in a photopolymerizable medium,” J. Opt. A, Pure Appl. Opt.11(12), 125202 (2009). [CrossRef]
  11. K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Holographic Data Storage: From Theory to Practical Systems, (Wiley 2010).
  12. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt.46(3), 295–301 (2007). [CrossRef] [PubMed]
  13. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express13(18), 6990–7004 (2005). [CrossRef] [PubMed]
  14. M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys.104(6), 064917 (2008). [CrossRef]
  15. M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerization in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt.11(2), 024008 (2009). [CrossRef]
  16. G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt.41(10), 1929–1939 (1994). [CrossRef]
  17. J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol.7(1), 232–242 (2007). [PubMed]
  18. T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater.12(5), 1431–1438 (2000). [CrossRef]
  19. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Modeling the Photochemical Kinetics Induced by Holographic Exposures in PQ/PMMA Photopolymer Material,” J. Opt. Soc. Am. B (to be published).
  20. M. R. Gleeson, J. T. Sheridan, F. Bruder, T. Rölle, H. Berneth, M-S. Weiser and T. Fäcke, are preparing a manuscript to be called “Analysis of the holographic performance of a commercially available photopolymer using the NPDD model.”
  21. J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behaviour of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B16(10), 1651–1657 (1999). [CrossRef]
  22. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.)112(10), 449–463 (2001). [CrossRef]
  23. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt.77(6–7), 639–662 (2003). [CrossRef]
  24. L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt.37(20), 4496–4499 (1998). [CrossRef] [PubMed]
  25. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express13(6), 1939–1947 (2005). [CrossRef] [PubMed]
  26. G. Odian, Principles of Polymerization 4th Edition (Wiley, New York, 1991).
  27. S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B26(3), 528–536 (2009). [CrossRef]
  28. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B23(10), 2079–2088 (2006). [CrossRef]
  29. S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys.106(10), 104911 (2009). [CrossRef]
  30. A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt.40(4), 699–706 (1993). [CrossRef]
  31. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B25(3), 396–406 (2008). [CrossRef]
  32. J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. A, Pure Appl. Opt. (to be published).
  33. J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. A, Pure Appl. Opt. (to be published).
  34. H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semi Conduct. Phys. Quantum Electron. Optoelectron.2(3), 66–70 (1999).
  35. M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys.46(6A), 3438–3447 (2007). [CrossRef]
  36. M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express16(4), 2829–2839 (2008). [CrossRef] [PubMed]
  37. R. R. A. Syms, Practical Volume Holography (Clarendon Press, Oxford, 1990).
  38. I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt.45(7), 1465–1477 (1998). [CrossRef]
  39. M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromol.32(20), 6552–6559 (1999). [CrossRef]
  40. C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B28(4), 658–666 (2011). [CrossRef]
  41. C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B28(4), 842–850 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited