OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22607–22618

Plasmon induced transparency in cascaded π-shaped metamaterials

Arif E. Çetin, Alp Artar, Mustafa Turkmen, Ahmet Ali Yanik, and Hatice Altug  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 22607-22618 (2011)
http://dx.doi.org/10.1364/OE.19.022607


View Full Text Article

Enhanced HTML    Acrobat PDF (2807 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally and numerically demonstrate a planar metamaterial consisting of two asymmetrically positioned π-structures in a single unit that exhibits plasmonic analogue of electromagnetically induced transparency (EIT). Through the coupling of the constituent nanorod elements, the proposed structure enables fine spectral tuning of the EIT-like behavior and controlling the location of near field enhancement. Originated from the asymmetric cascaded π-structures, we introduce a more compact system which possesses the EIT-like characteristics and as well as much smaller mode volumes. Due to these properties, the proposed metamaterials can be utilized for a wide range of applications including bio-chemical sensors, optical filters and modulators and enhancement of non-linear processes.

© 2011 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: July 22, 2011
Revised Manuscript: October 9, 2011
Manuscript Accepted: October 10, 2011
Published: October 25, 2011

Citation
Arif E. Çetin, Alp Artar, Mustafa Turkmen, Ahmet Ali Yanik, and Hatice Altug, "Plasmon induced transparency in cascaded π-shaped metamaterials," Opt. Express 19, 22607-22618 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22607


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991). [CrossRef] [PubMed]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77(2), 633–673 (2005). [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 ms−1 in an ultracold atomic gas,” Nature397(6720), 594–598 (1999). [CrossRef]
  4. G. Shvets and J. S. Wurtele, “Transparency of magnetized plasma at the cyclotron frequency,” Phys. Rev. Lett.89(11), 115003 (2002). [CrossRef] [PubMed]
  5. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 490–493 (2001). [CrossRef] [PubMed]
  6. M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature413(6853), 273–276 (2001). [CrossRef] [PubMed]
  7. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009). [CrossRef] [PubMed]
  8. R. Singh, C. Rockstuhl, F. Lederer, and W. L. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B79(8), 085111 (2009). [CrossRef]
  9. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys.70(1), 37–41 (2002). [CrossRef]
  10. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express18(16), 17187–17192 (2010). [CrossRef] [PubMed]
  11. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008). [CrossRef] [PubMed]
  12. S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B80(15), 153103 (2009). [CrossRef]
  13. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009). [CrossRef] [PubMed]
  14. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008). [CrossRef] [PubMed]
  15. A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett.11(4), 1685–1689 (2011). [CrossRef] [PubMed]
  16. A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett.10(11), 4571–4577 (2010). [CrossRef] [PubMed]
  17. S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” N. J. Phys.13(2), 023034 (2011). [CrossRef]
  18. S. A. Maier, “Plasmonics: The benefits of darkness,” Nat. Mater.8(9), 699–700 (2009). [CrossRef] [PubMed]
  19. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009). [CrossRef] [PubMed]
  20. A. Artar, A. A. Yanik, and H. Altug, “Directional double fano resonances in plasmonic hetero-oligomers,” Nano Lett.11(9), 3694–3700 (2011). [CrossRef] [PubMed]
  21. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010). [CrossRef] [PubMed]
  22. Z.-G. Dong, H. Liu, J.-X. Cao, T. Liu, S.-M. Wang, S.-N. Zhu, and X. Zang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett.97(11), 114101 (2010). [CrossRef]
  23. The numerical simulations are carried out using a Finite-Difference-Time-Domain package, Lumerical FDTD Solutions.
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  25. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003). [CrossRef] [PubMed]
  26. P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large Enhancement of Nonlinear Optical Phenomena by Plasmonic Nanocavity Gratings,” Nano Lett.10(12), 4880–4883 (2010). [CrossRef]
  27. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  28. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett.85(25), 6113–6115 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited